纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 96-101.doi: 10.13475/j.fzxb.20200303406

• 染整与化学品 • 上一篇    下一篇

负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能

戴沈华1,2, 翁良2, 李冰艳1, 张建平2, 杨旭红1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州美山子制衣有限公司, 江苏 苏州 215221
  • 收稿日期:2020-03-24 修回日期:2021-04-12 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 杨旭红
  • 作者简介:戴沈华(1983—),男,高级工程师,博士。主要研究方向为纤维的功能化改性。

Preparation and properties of nano-ZnO loaded polyurethane/polyester foamed composite sponge

DAI Shenhua1,2, WENG Liang2, LI Bingyan1, ZHANG Jianping2, YANG Xuhong1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Suzhou Meishanzi Garment Co., Ltd., Suzhou, Jiangsu 215221, China
  • Received:2020-03-24 Revised:2021-04-12 Published:2021-08-15 Online:2021-08-24
  • Contact: YANG Xuhong

摘要:

为解决目前衬垫材料弹性较差及缺乏功能性的问题,采用化学溶液法合成了纳米ZnO材料,将其分散到聚氨酯(PU)发泡胶液中与非织造聚酯纤维绵基材进行复合,制备出一种功能性发泡复合绵材料。对纳米ZnO的形貌与结构进行表征,测试了复合绵的压陷回弹性能、光催化特性、防紫外线性能及落球回弹性能。结果表明:合成的纳米ZnO是由直径为30 nm、长为5 μm的纳米棒组成的纳米花,单个纳米棒为六方相;复合绵具有不规则的孔洞结构,其落球回弹率最高可达到58.9%;聚氨酯含量越高,复合绵的压陷回弹性越好;添加纳米ZnO后,复合绵在900 min内可将甲基橙完全降解,其紫外线防护系数值随ZnO质量分数的增加而升高,且稳定性好。

关键词: 纳米ZnO, 非织造绵, 发泡聚氨酯, 回弹性, 甲基橙降解, 防紫外线性能, 光催化性能

Abstract:

In order to improve elasticity and enhance functions of nonwoven fabric, the research introduced in this paper used a chemical solution method to synthesize nano-ZnO, dispersed it into a polyurethane (PU) foam gel and then compounded with nonwoven polyester fabric substrate to prepare a new functional elastic material. Morphology and structure of the obtained nano-ZnO, and the indentation resilience, photocatalytic performance, ultraviolet protection and ball rebound resilience of the composite sponge were analyzed. The results show that the synthesized nano-ZnO is a nano-sized flower composed of nanorods with a diameter of 30 nm and a length of 5 μm. The composite sponge has a non-standard hole structure, and its ball rebound rate reaches 58.9%. It is show that the higher the PU content, the better the ball rebound resilience. After adding nano-ZnO, the composite sponge can completely degrade the methyl orange within 900 min. The ultraviolet protection factor value becomes higher with enhanced stability with the increase of ZnO content.

Key words: nano-ZnO, nonwoven sponge, foamed polyurethane, resiliency, methyl orange degradation, ultraviolet protection, photocatalytic performance

中图分类号: 

  • TS176

图1

纳米ZnO的SEM照片(×10 000)"

图2

纳米ZnO的XRD图谱"

图3

纳米ZnO的HRTEM照片 注:右下侧插图为对应的选区电子衍射(SAED)谱图。"

图4

聚酯纤维绵、ZnO发泡复合绵和纯发泡PU的SEM照片"

图5

发泡PU负载量对落球回弹性的影响"

表1

样品的耐疲劳压陷回弹性"

试样名称 平均厚度/mm 回弹率/%
圈内 圈外
聚酯纤维绵 32.5 39.1 83.1
PU2 32.0 36.3 88.2
PU6 34.1 36.8 92.7
PU10 35.6 37.9 93.9
纯发泡PU 37.2 39.4 94.4

图6

纳米ZnO发泡复合绵光催化降解甲基橙曲线"

图7

纳米ZnO对PU4发泡复合绵UPF值的影响"

[1] YIN Xuefeng, LING Tingting, FU Jufen. Study on the molding mechanism of three-dimensional non-woven bra cup[J]. Advanced Materials Research, 2011, 175-176:837-842.
[2] 崔海世. 无溶剂型脂肪族聚氨酯合成与性能研究[D]. 长春: 吉林大学, 2008: 39-41.
CUI Haishi. Study on the preparation and properties of aliphatic polyurethane without impregnant[D]. Changchun: Jilin University, 2008: 39-41.
[3] 阳霞. 低VOC聚氨酯软泡的研究[J]. 聚氨酯工业, 2017, 32(5):45-48.
YANG Xia. Study on low VOC flexible polyurethane foam[J]. Polyurethane Industry, 2017, 32(5):45-48.
[4] 沈慧芳, 黄建恒. 耐黄变水性聚氨酯分散液的制备和性能[J]. 聚氨酯工业, 2012, 27(2):27-30.
SHEN Huifang, HUANG Jianheng. Preparation and performance of anti-yellowing waterborne polyurethane dispersion[J]. Polyurethane Industry, 2012, 27(2):27-30.
[5] 朱堂龙, 王黎明, 沈勇, 等. 纳米TiO2对改性棉织物耐久性整理工艺研究[J]. 纺织装饰科技, 2018, 125(2):5-10.
ZHU Tanglong, WANG Liming, SHEN Yong, et al. Study on durable finishing process of modified cotton fabric with nano-TiO2[J]. Textile Decoration Technology, 2018, 125(2):5-10.
[6] 范鹏, 金轮, 罗芳华, 等. 石墨烯纳米复合涂层在纤维织物表面的制备与应用进展[J]. 表面技术, 2019, 48(6):56-65.
FAN Peng, JIN Lun, LUO Fanghua, et al. Preparation and application of grapheme nanocomposite coating on fabrics[J]. Surface Technology, 2019, 48(6):56-65.
[7] LEE Taemim, LEE Wonoh, KIM Sungwoo, et al. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio[J]. Advanced Functional Materials, 2018, 26:6206-6214.
doi: 10.1002/adfm.v26.34
[8] 周颖, 王闯, 朱佳颖, 等. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(9):35-41.
ZHOU Ying, WANG Chuang, ZHU Jiaying, et al. Preparation of controllable ZnO nanoparticles on surface of nonwovens[J]. Journal of Textile Research, 2019, 40(9):35-41.
[9] MYDEEN S S, KUMAR R R, SIVAKUMAR R, et al. Graphene quantum dots/ZnO nanocomposite: synjournal, characterization, mechanistic investigations of photocatalytic and antibacterial activities[J]. Chemical Physics Letters, 2020, 761(16):138009.
doi: 10.1016/j.cplett.2020.138009
[10] WANG Sheng, KUANG Panyong, CHANG Bei. ZnO hierarchical microsphere for enhanced photocatalytic activity[J]. Journal of Alloysand Compounds, 2018, 741(15):622-632.
[11] 张崇淼, 温银梅, 高敏, 等. TiO2、ZnO和TiO2/ZnO三种氧化物粉体材料的抗菌性能对比[J]. 化工进展, 2018, 37(11):4343-4348.
ZHANG Chongmiao, WEN Yinmei, GAO Min, et al. Comparative study on the antibacterial properties of TiO2,ZnO and TiO2/ZnO oxide powders[J]. Chemical Industry and Engineering Progress, 2018, 37(11):4343-4348.
[12] 王超, 宋乐, 王佳斌, 等. 纳米氧化锌在纺织行业的应用与研究[J]. 信息记录材料, 2016, 17(4):5-6.
WANG Chao, SONG Le, WANG Jiabin, et al. Application and research of nanometer zinc oxide in the textile industry[J]. Information Recording Materials, 2016, 17(4):5-6.
[13] QI Kezhen, CHENG Bei, YU Jiaguo, et al. Review on the improvement of the photocatalytic and antibacterial activities of ZnO[J]. Journal of Alloys and Compounds, 2017, 727(15):792-820.
doi: 10.1016/j.jallcom.2017.08.142
[14] 毛翠萍. 纳米功能化蚕丝织物的制备及其在可穿戴领域的应用研究[D]. 重庆: 西南大学, 2016:17-19.
MAO Cuiping. Nanomaterial-functionalized silk and its application in wearable electronics[D]. Chongqing: Southwest University, 2016: 17-19.
[15] 陈海宏, 江创生, 赖明河, 等. 静电纺丝制备聚合物/无机物复合纳米纤维研究进展[J]. 产业用纺织品, 2012, 30(9):1-5.
CHEN Haihong, JIANG Chuangsheng, LAI Minghe, et al. Research progress of polymer/inorganic composite nanofiber prepared by electrospinning[J]. Technical Textiles, 2012, 30(9):1-5.
[16] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1):1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1):1-9.
[17] KHAN Azam, HUSSAIN Mushtaque, NUR Omer, et al. Fabrication of zinc oxide nanoneedles on conductive textile forharvesting piezoelectric potential[J]. Chemical Physics Letters, 2014, 612(18):62-67.
doi: 10.1016/j.cplett.2014.08.009
[18] 杨骞, 刘琦, 陈群, 等. 瓶状和棒形的纳米ZnO光催化降解甲基橙的研究[J]. 化工新型材料, 2009, 37(5):78-81.
YANG Qian, LIU Qi, CHEN Qun, et al. Photocatalytic degradation of methyl orange using ZnO nanobottles and nanorods[J]. New Chemical Materials, 2009, 37(5):78-81.
[1] 赵永芳, 钱建华, 孙丽颖, 彭慧敏, 梅敏. 银纳米线改性棉织物的制备及其性能[J]. 纺织学报, 2021, 42(05): 115-121.
[2] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[3] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[4] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[5] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[6] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[7] 周颖, 王闯, 朱佳颖, 黄林汐, 杨丽丽, 余厚咏, 姚菊明, 金万慧. 非织造布表面形貌可控氧化锌纳米粒子的构筑[J]. 纺织学报, 2019, 40(09): 35-41.
[8] 刘慧 徐英莲. 纳米ZnO整理对蚕丝织物抗紫外线性能的影响[J]. 纺织学报, 2016, 37(07): 104-108.
[9] 高党鸽 冯军芳 段羲颖 马建中. 涂料印花用聚丙烯酸酯/纳米ZnO复合乳液的制备及其性能[J]. 纺织学报, 2015, 36(08): 78-83.
[10] 陈和春 尹桂波. 双元配体转光剂的合成及其在防紫外线织物中的应用[J]. 纺织学报, 2014, 35(5): 83-0.
[11] 赵殿栋;邓炳耀. 负载纳米ZnO非织造材料的制备及其光催化性能[J]. 纺织学报, 2010, 31(12): 23-27.
[12] 张素俭;于伟东. 竹原纤维/毛交织花呢的防紫外线性能[J]. 纺织学报, 2008, 29(6): 36-38.
[13] 侯大寅;李良飞;魏取福. PET基纳米ZnO溅射成膜及其紫外线通透性能[J]. 纺织学报, 2007, 28(2): 48-51.
[14] 夏风林. 经编间隔织物的抗压回弹性研究[J]. 纺织学报, 2003, 24(04): 58-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!