纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 94-101.doi: 10.13475/j.fzxb.20200305008

• 染整与化学品 • 上一篇    下一篇

模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料

夏云, 吕汪洋, 陈文兴()   

  1. 浙江理工大学 纺织纤维材料与加工技术国家地方联合工程试验室, 浙江 杭州 310018
  • 收稿日期:2020-03-19 修回日期:2020-06-24 出版日期:2020-12-15 发布日期:2020-12-23
  • 通讯作者: 陈文兴
  • 作者简介:夏云(1983—),男,工程师,博士生。主要研究方向为环境催化纤维。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303000)

Catalytic degradation of dye by metal phthalocyanine/multi-walled carbon nanotubes under simulated solar light

XIA Yun, LÜ Wangyang, CHEN Wenxing()   

  1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-03-19 Revised:2020-06-24 Online:2020-12-15 Published:2020-12-23
  • Contact: CHEN Wenxing

摘要:

为拓宽芬顿体系pH值的使用范围以高效降解水体中的染料,采用回流法制备多壁碳纳米管负载的十六氯铁酞菁 (FePcCl16/MWCNTs)催化剂,以双氧水(H2O2)为氧化剂,在模拟太阳光照的作用下催化降解酸性橙7(AO7) 染料。借助扫描电子显微镜、透射电子显微镜、红外光谱仪、热重分析仪和X射线衍射仪等对催化体系的催化性能、影响因素和催化机制进行研究。结果表明:催化体系在酸性、无机盐及尿素环境中,对AO7的降解率均为100%,在中性环境中为97%,在碱性条件下为75%;该催化体系经5次循环使用后,对AO7的降解率仍在95%以上;催化体系中降解AO7的主要活性种为羟基自由基和超氧自由基,光照可促进活性种的产生而提高体系的催化性能。

关键词: 模拟太阳光, 金属酞菁, 多壁碳纳米管, 催化降解, 酸性橙7染料, 类芬顿体系, 废水处理

Abstract:

In order to expand the pH value of the Fenton system to degrade dye efficiently, the catalyst FePcCl16/multi-walled carbon nanotubes (FePcCl16/MWCNTs), synthesized by means of FePcCl16 loaded on MWCNTs via reflux with H2O2 as oxidant, was employed to degrade Acid Orange 7 dye (AO7) under simulated solar light irradiation. The catalytic performance, influencing factors and catalytic mechanism of the catalytic system were characterized by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectrometer, thermogravimetric analyzer and X-ray diffractomer. The results show that the degradation rate of AO7 is 100% under acidic, inorganic salts and urea conditions in catalytic system, 97% under the neutral condition, and 75% under the alkaline condition. The degradation rate of AO7 is still above 95% after 5 cycles of the catalytic system. The results of catalytic mechanism show that the main active species of AO7 degradation in the catalytic system are hydroxyl radicals and superoxide radicals. Solar light irradiation promotes the production of active species to improve the catalytic performance of the system.

Key words: simulated solar light, metal phthalocyanine, multi-walled carbon nanotube, catalytic degradation, Acid Orange 7 dye, Fenton-like system, wastewater treatment

中图分类号: 

  • O643.32

图1

FePcCl16/MWCNTs微观形态图"

图2

MWCNTs、FePcCl16、FePcCl16/MWCNTs的红外光谱图"

图3

MWCNTs、FePcCl16、FePcCl16/MWCNTs的热稳定分析图"

图4

MWCNTs、FePcCl16、FePcCl16/MWCNTs的X射线衍射图"

图5

不同催化体系对AO7染料的催化性能"

图6

FePcCl16/MWCNTs/H2O2体系中AO7的吸光度"

图7

光照对FePcCl16/MWCNTs/H2O2催化性能的影响"

图8

双氧水浓度对FePcCl16/MWCNTs/H2O2催化性能的影响"

图9

pH值对FePcCl16/MWCNTs/H2O2催化性能的影响"

图10

无机盐及尿素对FePcCl16/MWCNTs/H2O2催化性能的影响"

图11

FePcCl16/MWCNTs/H2O2循环使用性能"

图12

IPA 和p-BQ对FePcCl16/MWCNTs/H2O2催化性能的影响"

图13

DMPO捕获自由基的自旋信号"

图14

活性种的产生路径图"

[1] SANCHEZ-SANCHEZ A, IZQUIERDO M T, MATHIEU S, et al. Structure and electrochemical properties of carbon nanostructures derived from nickel(II) and iron(II) phthalocyanines[J]. J Adv Res, 2020,22:85-97.
doi: 10.1016/j.jare.2019.11.004 pmid: 31956445
[2] HUANG W J, AHLFIELD J M, KOHL P A, et al. Heat treated tethered iron phthalocyanine carbon nanotube-based catalysts for oxygen reduction reaction in hybrid fuel cells[J]. Electrochimica Acta, 2017,257:224-232.
doi: 10.1016/j.electacta.2017.10.048
[3] 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019,40(12):68-73.
CUI Guixin, DONG Yongchun, WANG Peng. Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts[J]. Journal of Textile Research, 2019,40(12):68-73.
doi: 10.1177/004051757004000110
[4] 庄帅, 阳海, 安继斌, 等. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019,40(11):131-139.
ZHUANG Shuai, YANG Hai, AN Jibin, et al. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals[J]. Journal of Textile Research, 2019,40(11):131-139.
[5] GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review[J]. Chem Eng J, 2017,310:41-62.
doi: 10.1016/j.cej.2016.10.064
[6] INAGAKI M, KONNO H, TANAIKE O. Carbon materials for electrochemical capacitors[J]. J Power Sources, 2010,195(24):7880-7903.
doi: 10.1016/j.jpowsour.2010.06.036
[7] ATALAY S, ERS Z G. Advanced oxidation pro-cesses [M]//Novel Catalysts in Advanced Oxidation of Organic Pollutants. Cham: Springer International Publishing, 2016: 23-34.
[8] PRIYANKA K P, SANKARARAMAN S, BALAKRISHNA K M, et al. Enhanced visible light photocatalysis using TiO2/phthalocyanine nanocomposites for the degradation of selected industrial dyes[J]. J Alloys Compd, 2017,720:541-549.
doi: 10.1016/j.jallcom.2017.05.308
[9] MPHUTHI N G, ADEKUNLE A S, FAYEMI O E, et al. Phthalocyanine doped metal oxide nanoparticles on multiwalled carbon nanotubes platform for the detection of dopamine[J]. Sci Rep, 2017,7:43181.
pmid: 28256521
[10] ZHU Zhexin, LU Wangyang, LI Nan, et al. Pyridyl-containing polymer blends stabilized iron phthalocyanine to degrade sulfonamides by enzyme-like process[J]. Chem Eng J, 2017,321:58-66.
doi: 10.1016/j.cej.2017.03.039
[11] LIU Hongya, BAO Shuxiang, CAI Zutong, et al. A novel method for ultra-deep desulfurization of liquid fuels at room temperature[J]. Chem Eng J, 2017,317:1092-1098.
doi: 10.1016/j.cej.2017.01.086
[12] FAN X, CHANG D W, CHEN X, et al. Functionalized graphene nanoplatelets from ball milling for energy applications[J]. Current Opinion in Chemical Engineering, 2016,11:52-58.
doi: 10.1016/j.coche.2016.01.003
[13] MARINHO B, GHISLANDI M, TKALYA E, et al. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder[J]. Powder Technol, 2012,221:351-358.
doi: 10.1016/j.powtec.2012.01.024
[14] LU Wangyang, LI Nan, CHEN Wenxing, et al. The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes[J]. Carbon, 2009,47(14):3337-3345.
doi: 10.1016/j.carbon.2009.07.055
[15] HU Jirun, LIU Hongya, WANG Lulin, et al. Electronic properties of carbon nanotubes linked covalently with iron phthalocyanine to determine the formation of high-valent iron intermediates or hydroxyl radicals[J]. Carbon, 2016,100:408-416.
doi: 10.1016/j.carbon.2016.01.010
[16] WU F, HUANG H, XU T, et al. Visible-light-assisted peroxymonosulfate activation and mechanism for the degradation of pharmaceuticals over pyridyl-functionalized graphitic carbon nitride coordinated with iron phthalocyanine[J]. Appl Catal B: Environ, 2017,218:230-239.
doi: 10.1016/j.apcatb.2017.06.057
[1] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[2] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[3] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[4] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[5] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[6] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2 / MIL-88B( Fe) / 聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[7] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[8] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[9] 施小平, 李瑶, 潘家豪, 王挺, 吴礼光. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019, 40(10): 105-112.
[10] 汪风波, 王加毅, 孙正, 马颜雪, 吕迎智, 张魏峰, 吕艳, 吕明明, 陈思雨, 李毓陵, 陈小光. 聚丙烯酸酯浆料废水处理中试研究[J]. 纺织学报, 2019, 40(01): 108-113.
[11] 李庆 张莹 樊增禄 朱炜. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(02): 112-118.
[12] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[13] 赵明宇 刘海辉 王学晨 张兴祥. 角蛋白/多壁碳纳米管复合纤维的制备[J]. 纺织学报, 2017, 38(02): 21-25.
[14] 黄旭 张炜栋. 五乙烯六胺改性介孔材料及其在印染废水处理中的应用[J]. 纺织学报, 2015, 36(07): 83-88.
[15] 冯静 杜英英 邢彦军. 钨杂二氧化钛负载棉织物的微波法制备及光催化性能[J]. 纺织学报, 2014, 35(7): 88-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!