纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 95-101.doi: 10.13475/j.fzxb.20200401607

• 纺织工程 • 上一篇    下一篇

针织面料凉爽性能的评价方法及其预测模型

杨阳1, 俞欣2, 章为敬1, 张佩华1()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.迪肯大学 前沿材料研究所, 澳大利亚 吉朗 3216
  • 收稿日期:2020-04-07 修回日期:2020-12-10 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 张佩华
  • 作者简介:杨阳(1990—),女,博士生。主要研究方向为服用纺织品热湿舒适性研究。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100)

Evaluation method and prediction model establishment of cooling performance of knitted fabrics

YANG Yang1, YU Xin2, ZHANG Weijing1, ZHANG Peihua1()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Institute for Frontier Materials, Deakin University, Geelong 3216, Australia
  • Received:2020-04-07 Revised:2020-12-10 Online:2021-03-15 Published:2021-03-17
  • Contact: ZHANG Peihua

摘要:

针对针织面料的凉爽性能评价没有明确系统的表征和检测方法的现状,提出了针织面料的凉爽性能的综合评价方法。以干态织物升温性能表征织物导热能力,以湿态织物升温性能表征织物导热、水分扩散和蒸发等降温性能;结合织物导热性能的评价原理,提出针织面料凉爽性能的评价指标:凉爽温度、凉爽温度指数和凉爽能力指数。采用相关性分析方法对34块织物的相关热湿舒适性能参数与凉爽性能参数的相关性进行分析,并基于逐步法多元回归分析建立了凉爽性能参数的预测模型。研究结果表明:与织物凉爽性能相关的主要因素包括织物的热阻、湿阻、干燥速率和扩散半径;凉爽能力指数可通过织物的热阻、湿阻和干燥速率进行预测,凉爽温度可通过织物的热阻和扩散半径进行预测。

关键词: 针织面料, 凉爽性能, 凉爽性能预测模型, 热湿舒适性, 凉爽能力指数

Abstract:

There is no definite systematic characterization and test method to evaluate the cooling performance of knitted fabrics. A novel evaluation method of cooling performance of knitted fabrics was introduced. This method was characterized by the thermal transfer performance of dry fabric and the cooling performance triggered by thermal transfer, moisture diffusion and evaporation of wet fabrics. Based on the evaluation theory of thermal transfer behavior of fabrics, relevant evaluation indexes including cooling temperature, cooling temperature index and cooling capacity index were proposed. The correlation analysis of the cooling parameters and the relevant thermal comfort parameters of 34 knitted fabrics were conducted, and the prediction models of cooling performance parameters were established based on stepwise multiple regression analysis. The results show that the cooling performance of knitted fabrics are mainly linearly related their thermal resistance, water vapor resistance, diffusion radius and drying rate. The cooling capacity index can be predicted by thermal resistance, water vapor resistance and drying rate of knitted fabrics, and the cooling temperature can be predicted by thermal resistance and diffusion radius of knitted fabrics.

Key words: knitted fabric, cooling performance, prediction model of cooling performance, thermal-moist comfort, cooling capacity index

中图分类号: 

  • TS181

图1

针织面料的编织结构"

表1

针织面料试样的基本参数"

面料
编号
编织结构 面密度/
(g·m-2)
纵密/(横列·
(5 cm)-1)
横密/(纵行·
(5 cm)-1)
厚度/
mm
F1 双罗纹 191 68 74 0.96
F2 双罗纹 191 70 74 1.00
F3 双罗纹 192 68 74 1.01
F4 双罗纹 196 70 74 1.01
F5 双罗纹 194 70 72 0.98
F6 双罗纹 197 68 74 0.99
F7 双罗纹 195 70 72 1.01
F8 双罗纹 191 70 72 0.94
F9 双罗纹 197 68 74 0.98
F10 双罗纹 196 70 72 0.99
F11 双罗纹 221 68 70 0.90
F12 双罗纹 221 70 72 0.81
F13 双罗纹 218 70 72 0.84
F14 双罗纹 221 68 72 0.83
F15 双罗纹 218 68 72 0.88
F16 双罗纹 225 68 74 0.83
F17 双罗纹 220 70 72 0.84
F18 双罗纹 223 68 72 0.84
F19 双面集圈 161 90 65 0.71
F20 双面集圈 158 94 67 0.74
F21 双面集圈 179 95 63 0.86
F22 双面集圈 190 92 65 1.06
F23 双面集圈 182 96 67 1.11
F24 双面集圈 170 95 63 0.69
F25 双面集圈 168 93 65 0.77
F26 双面集圈 169 91 65 0.91
F27 双面集圈 175 93 67 0.94
F28 双面集圈 170 92 65 0.95
F29 小网眼 127 95 64 0.63
F30 小网眼 124 93 67 0.63
F31 小网眼 129 92 66 0.68
F32 大网眼 107 94 65 0.57
F33 大网眼 109 93 67 0.59
F34 大网眼 106 95 65 0.60

图2

测试装置结构示意图"

表2

描述性统计分析结果"

性能参数 最小值 最大值 平均值 标准偏差 偏度 偏度标准分数 峰度 峰度标准分数
透气率/(L·(m2·s)-1) 580.02 3 314.22 1 539.33 808.77 0.55 1.37 -0.86 -1.09
芯吸高度/cm 7.90 21.80 14.92 4.17 0.03 0.08 -1.10 -1.39
单向导湿指数 -161.93 835.05 237.86 249.18 0.84 2.09 0.70 0.89
扩散半径/mm 5.00 30.00 17.33 6.07 -0.42 -1.05 -0.22 -0.28
干燥速率/(mL·h-1) 0.92 2.23 1.53 0.31 0.21 0.51 0.01 0.01
热阻/(10-3m2·K·W-1) 12.25 27.74 18.37 3.95 0.56 1.39 -0.15 -0.19
湿阻/(cm2·Pa·W-1) 1.24 4.95 3.12 1.05 0.33 0.83 -0.44 -0.56
凉爽温度/℃ 5.50 7.88 6.71 0.69 -0.43 -1.06 -1.02 -1.29
凉爽能力指数/(10-3m2·K·(W·s)-1) 26.04 47.53 33.92 5.76 0.75 1.85 -0.33 -0.42
凉爽温度指数/(K·s-1) 14.35 26.19 18.68 3.18 0.75 1.85 -0.33 -0.42

表3

织物热湿传递性能参数与凉爽温度、凉爽能力指数的相关性分析"

性能参数 相关系数类型 透气率 芯吸高度 单向导湿指数 扩散半径 干燥速率 热阻 湿阻
凉爽能力指数 皮尔森相关系数 0.460* -0.282 -0.303 0.005 0.198 -0.779** 0.621**
显著性 0.017 0.106 0.082 0.979 0.262 0 0
凉爽温度 皮尔森相关系数 0.055 0.089 -0.255 0.334 0.014 -0.708** 0.378*
显著性 0.757 0.615 0.146 0.054 0.939 0 0.028

图3

热湿性能参数的线性相关性分析结果"

表4

凉爽能力指数与热湿性能参数的多元线性回归预测分析和方差分析结果"

模型
编号
预测分析 项目 方差分析
R2 调整
R2
标准
平方和 df 均方 F 显著
1 0.606 0.594 3.673 回归 664.38 1 664.38 49.24 0.00
残差 431.77 32 13.49
总计 1 096.15 33
2 0.731 0.714 3.085 回归 801.15 2 400.57 42.09 0.00
残差 295.01 31 9.52
总计 1 096.15 33
3 0.765 0.742 2.930 回归 838.58 3 279.53 32.56 0.00
残差 257.57 30 8.59
总计 1 096.15 33

表5

凉爽能力指数与热湿性能参数的多元线性回归模型系数矩阵"

模型
编号
项目 非标准
化系数
标准差 标准化
系数
T 显著性
1 常量 54.803 3.043 18.012 0.000
热阻 -1.137 0.162 -0.779 -7.017 0.000
2 常量 44.404 3.749 11.845 0.000
热阻 -0.927 0.147 -0.635 -6.310 0.000
湿阻 2.097 0.553 0.381 3.791 0.001
3 常量 34.917 5.773 6.049 0.000
热阻 -0.813 0.150 -0.557 -5.422 0.000
湿阻 2.576 0.573 0.469 4.493 0.000
干燥速率 3.863 1.850 0.207 2.088 0.045

表6

凉爽温度与热湿性能参数的多元线性回归预测分析和方差分析结果"

模型
编号
预测分析 项目 方差分析
R2 调整
R2
标准差 平方和 df 均方 F 显著性
1 0.501 0.486 0.496 回归 7.91 1 7.91 32.17 0.00
残差 7.82 32 0.25
总计 15.79 33
2 0.678 0.658 0.405 回归 10.71 2 5.35 32.68 0.00
残差 5.08 32 0.16
总计 15.79 33

表7

凉爽温度与热湿性能参数的多元线性回归模型系数矩阵"

模型
编号
项目 非标准
化系数
标准差 标准化
系数
T 显著性
1 常量 8.987 0.411 21.875 0.000
热阻 -0.124 0.022 -0.708 -5.672 0.000
2 常量 8.311 0.373 22.274 0.000
热阻 -0.133 0.018 -0.758 -7.390 0.000
扩散半径 0.048 0.012 0.424 4.129 0.000
[1] GUO S M, YU D M, LIU Y T, et al. Design and development of cool multifunctional composite high-grade fabrics[J]. Applied Mechanics and Materials, 2014,633:476-479.
[2] XU D, CUI P. Simultaneous determination of thickness, thermal conductivity and porosity in textile material design[J]. Journal of Inverse and Ⅲ-posed Problems, 2016,24(1):59-66.
[3] 王欢, 李艳梅. 适应高湿热环境的导湿快干服装[J]. 毛纺科技, 2019,47(4):57-61.
WANG Huan, LI Yanmei. Fast-dry clothing that is suitable for high humidity and heat environment[J]. Wool Textile Journal, 2019,47(4):57-61.
[4] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016,37(1):167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016,37(1):167-172.
[5] WATKINS D A, SLATER K. The moisture-vapour permeability of textile fabrics[J]. Journal of The Textile Institute, 1981,72(1):11-18.
[6] SUPUREN G, OGLAKCIOGLU N, OZDIL N, et al. Moisture management and thermal absorptivity properties of double-face knitted fabrics[J]. Textile Research Journal, 2011,81(13):1320-1330.
[7] ZHOU H, WANG H, NIU H, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Advanced Materials Interfaces, 2016,3(17):1-6.
[8] FUKAZAWA T, HAVENITH G. Differences in comfort perception in relation to local and whole body skin wittedness[J]. European Journal of Applied Physiology, 2009,106(1):15-24.
doi: 10.1007/s00421-009-0983-z pmid: 19159949
[9] 王勃翔, 刘丽, 路艳华, 等. 互穿聚合物网络温敏凝胶对棉织物液态水分传递的影响[J]. 纺织学报, 2018,39(11):79-84.
WANG Boxiang, LIU Li, LU Yanhua, et al. Influence of interpenetrating polymer networks thermosensitive gel on liquid moisture transfer of cotton fabric[J]. Journal of Textile Research, 2018,39(11):79-84.
[10] 陈萌, 朱方龙. 热辐射下织物内水分干燥实验及其动力学研究[J]. 纺织学报, 2018,39(8):52-57.
CHEN Meng, ZHU Fanglong. Drying experiment and kinetics of wetted fabrics exposed to thermal radiation[J]. Journal of Textile Research, 2018,39(8):52-57.
[11] CHEN Q, TANG K P, MA P, et al. Evaluation of water absorption and transport properties of weft knitted polyester fabrics by spontaneous uptake water transport tester and conventional test methods[J]. Fibers and Polymers, 2016,17(8):1287-1295.
doi: 10.1007/s12221-016-6454-3
[12] 张腾飞, 石禄丹, 胡红梅, 等. 生物基聚酰胺 56 低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019,40(5):1-7.
ZHANG Tengfei, SHI Ludan, HU Hongmei, et al. Synjournal and characterization of bio-based polyamide 56 oligomer modified polyester[J]. Journal of Textile Research, 2019,40(5):1-7.
doi: 10.1177/004051757004000101
[13] 苏利涛, 林娜, 刘琳, 等. 浅议舒适性个体安全防护面料的研发方向[J]. 棉纺织技术, 2020,48(1):82-84.
SU Litao, LIN Na, LIU Lin, et al. Discussion on the research and development direction of comfortable individual safety protective fabric[J]. Cotton Textile Technology, 2020,48(1):82-84.
[14] WONG S C, LIAO W S. Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles[J]. International Journal of Heat and Mass Transfer, 2018,123:839-847.
doi: 10.1016/j.ijheatmasstransfer.2018.03.031
[15] FAN J, CHENG X, WEN X, et al. An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results[J]. International Journal of Heat and Mass Transfer, 2004,47(10/11):2343-2352.
doi: 10.1016/j.ijheatmasstransfer.2003.10.033
[16] HU J Y, HES L, LI Y, et al. Fabric touch tester: integrated evaluation of thermal-mechanical sensory properties of polymeric materials[J]. Polymer Testing, 2006,25(8):1081-1090.
doi: 10.1016/j.polymertesting.2006.07.008
[17] CIESIELAKA W I, DE M G, VAN L. Dry heat transfer from the skin surface into textiles: subjective and objective measurement of thermal haptic perception of textiles: preliminary studies[J]. Journal of The Textile Institute, 2016,107(4):445-455.
doi: 10.1080/00405000.2015.1034938
[18] YANG Y, ZHANG W J, ZHANG P H. Evaluation method for the hygroscopic and cooling function of knitted fabrics[J]. Textile Research Journal, 2019,89(23/24):5024-5040.
doi: 10.1177/0040517519846069
[19] YAO B G, LI Y, HU J Y, et al. An improved test method for characterizing the dynamic liquid moisture transfer in porous polymeric materials[J]. Polymer Testing, 2006,25(5):677-689.
doi: 10.1016/j.polymertesting.2006.03.014
[20] 杨绍芳, 葛淼, 潘池钦, 等. 基于分类回归树的中国健康成年男性血清CA19-9参考值冷热点联合空间分布[J]. 西安交通大学学报(医学版), 2019,40(4):635-639.
YANG Shaofang, GE Miao, PAN Chiqin, et al. Spatial distribution combined cold and hotspots of China's healthy adult male serum CA19-9 reference value based on classification and regression tree[J]. Journal of Xi'an Jiaotong University (Medical Sciences Edition), 2019,40(4):635-639.
[21] 卢璐, 张廷新. 基于回归分析的我国外汇储备规模影响因素研究[J]. 聊城大学学报(自然科学版), 2014,27(2):23-37.
LU Lu, ZHANG Tingxin. A study on the influencing factors of China's foreign exchange reserve scale based on regression analysis[J]. Journal of Liaocheng University (Natural Science Edition), 2014,27(2):23-37.
[1] 李新彤, 高哲, 顾洪阳, 丛洪莲. 针织西服面料的挺括风格研究[J]. 纺织学报, 2020, 41(11): 53-58.
[2] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[3] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[4] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[5] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[6] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[7] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[8] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[9] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[10] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
[11] 丛洪莲 张永超. 生物基锦纶的性能及其在针织面料中的应用[J]. 纺织学报, 2015, 36(07): 22-27.
[12] 张纪婷 蒋高明. 保暖涤纶割圈绒织物的热湿舒适性[J]. 纺织学报, 2015, 36(04): 55-59.
[13] 吴菲非 于高杰 陈雁. 磁性纤维含量对针织面料服用性能的影响[J]. 纺织学报, 2014, 35(3): 27-0.
[14] 张新杰 丛洪莲. 结构参数对割圈绒织物热湿舒适性的影响[J]. 纺织学报, 2014, 35(1): 46-0.
[15] 裘玉英. 空转转数对空气层组织织物性能的影响[J]. 纺织学报, 2013, 34(11): 62-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!