纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 175-180.doi: 10.13475/j.fzxb.20200403806

• 综合述评 • 上一篇    下一篇

网状结构织物制备与应用研究进展

杨萍1, 严飙2, 马丕波1()   

  1. 1.江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
    2.上海宇航系统工程研究所, 上海 215123
  • 收稿日期:2020-04-16 修回日期:2020-09-03 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 马丕波
  • 作者简介:杨萍(1996—),女,硕士生。主要研究方向为网类材料设计与性能。
  • 基金资助:
    国家重大研发计划项目(2017YFB1103400);国家自然科学基金项目(11972172)

Research advances in manufacture and properties of mesh fabrics

YANG Ping1, YAN Biao2, MA Pibo1()   

  1. 1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi,Jiangsu 214122, China
    2. Shanghai Institute of Aerospace Systems Engineering, Shanghai 215123, China
  • Received:2020-04-16 Revised:2020-09-03 Online:2021-01-15 Published:2021-01-21
  • Contact: MA Pibo

摘要:

为深入拓展网状结构织物在实际工程中的应用,分别介绍了近年来机织网状结构织物、针织网状结构织物和编织网状结构织物的应用基础和制备方法。从纤维原材料、织物组织结构和织物后整理方面重点阐述了网状结构织物的力学性能和仿真模拟的研究进展。针对网状结构织物应用领域的不断扩大,进一步探索了网状结构织物的力学性能,增强网状结构织物的动态模拟,提高网类材料的使用寿命、减少能耗,以使网状结构织物的性能和使用效果逐渐提升。结合当前科技发展趋势,预测网状结构织物将会在海洋、建筑、航空航天等领域方向有更深入的发展,期望为网状结构织物产品的研发提供参考。

关键词: 网状结构织物, 机织结构, 针织结构, 编织结构, 力学性能

Abstract:

In order to further expand the application of mesh fabrics for engineering applications, the structural features and preparation methods of woven, knitted and braided mesh fabrics in recent years were examined in this paper. Research progress in the mechanical properties and simulation of mesh fabrics were mainly discussed from the aspects of fiber raw materials, organization structure and finishing. In view of the continuous expansion of application of mesh fabrics, it was concluded that further explorations in the fields of mechanical properties, dynamic simulation and the service life, reduction of the energy consumption were necessary. Combined with the current development of science and technology, mesh fabrics will have further development for ocean, architecture, and aerospace applications. This paper provides a direction reference for the research and development of mesh fabric products.

Key words: mesh fabric, woven structure, knitted structure, braided structure, mechanical propertiy

中图分类号: 

  • TS186.9
[1] ZHAO Y, CHEN Q, BI C, et al. Experimental investigation on hydrodynamic coefficients of a column-stabilized fish cage in waves[J]. Journal of Marine Science and Engineering, 2019,7(11):418-426.
[2] DONG G, TANG M, XU T, et al. Experimental analysis of hydrodynamic force on the net panel in wave[J]. Applied Ocean Reaearch, 2019,87:233-246.
[3] GHORBANI V, JEDDI A A A, DABIRYAN H. Investigation of the flexural behavior of self-consolidating mortars reinforced with net warp-knitted spacer fabrics[J]. Construction and Building Materials, 2020,232:66-82.
[4] PICKETT A K, SIRTAUTAS J, ERBER A. Braiding simulation and prediction of mechanical properties[J]. Applied Composite Materials, 2009,16(6):345-364.
[5] MAGDI E M, ABEER M. Analysis of cyclic load die forming for woven jute fabric 3D reinforcement polymeric composites[J]. Journal of Industrial Textiles, 2018,47(7):1681-1701.
[6] VINCENT B, SIMON J, DI C S. Development of a model for flexural rigidity of fishing net with a spring mass approach and its inverse identification by metaheuristic parametric optimization[J]. Ocean Engineering, 2020,203:76-92.
[7] CAREY J, MUNRO M, FAHIM A. Regression-based model for elastic constants of 2D braided/woven open mesh angle-ply composites[J]. Polymer Composites, 2005,26(2):152-164.
[8] VO D M P, GERALD H, CHOKRI C. Novel weaving technology for the manufacture of 2D net shape fabrics for cost effective textile reinforced composites[J]. Autex Research Journal, 2018,18(3):251-257.
[9] 应芬, 贾伟, 李楠, 等.超细金属丝可编织性及其网眼织物的力学性能研究[J].国际纺织导报, 2019, 47(4):29-30, 32-34.
YING Fen, JIA Wei, LI Nan, et al. The study on the knitting property of ultrafine wire and mechanical properties of its warp knitting mesh fabric[J]. Melliand China, 2019, 47(4):29-30, 32-34.
[10] 邵光伟. 空间可收展卫星天线金属网的编织工艺及其性能研究[D]. 上海:东华大学, 2014: 19-26.
SHAO Guangwei. Warp knitting technology and performance research of metal mesh for spacecraft deployable antenna reflector[D]. Shanghai: Donghua University, 2014: 19-26.
[11] 周彤. 织网机国产化进程回顾及与国际先进水平相比存在的主要差距[J].渔业现代化, 1997(1):19-22.
ZHOU Tong. Review of the localization process of the weaving machine and the main gaps compared with the international advanced level[J]. Fishery Modernization, 1997(1):19-22.
[12] 曹清林, 夏卫东, 崔荣. 渔网编织设备发展现状[J].纺织导报, 2014(8):56-60.
CAO Qinglin, XIA Weidong, CUI Rong. The research status of fishing net machines[J]. China Textile Leader, 2014(8):56-60.
[13] 袁天行, 孙志宏, 吕宏展, 等. 无结网编织工艺研究[J]. 纺织学报, 2019,40(9):70-74.
YUAN Tianxing, SUN Zhihong, LÜ Hongzhan, et al. Study on braiding of knotless netting[J]. Journal of Textile Research, 2019,40(9):70-74.
[14] AYRANCL C, ROMANYK D, CAREY J P. Elastic properties of large-open-mesh 2D braided composites: model predictions and initial experimental findings[J]. Polymer Composites, 2010,31(12):2017-2024.
[15] FANG G D, LIANG J. A review of numerical modeling of three-dimensional braided textile composites[J]. Journal of Composite Materials, 2011,45(23):2415-2436.
[16] RISICATO J, LEGRAND X, SOULAT D. Innovative geometrical pre-mesh modeling strategy for 3D fibre preform manufacturing[J]. Journal of Industrial Textiles, 2014,44(3):447-462.
[17] 闫星月, 谢光银. 绞纱组织防伪网织物开发与力学性能研究[J]. 武汉纺织大学学报, 2014,27(6):11-14.
YAN Xingyue, XIE Guangyin. Hank organization anti-counterfeiting network development and mechanical properties of fabric[J]. Journal of Wuhan Textile University, 2014,27(6):11-14.
[18] YANG E C, LINFORTH S, TUAN N, et al. Hybrid-mesh modelling & validation of woven fabric subjected to medium velocity impact[J]. International Journal of Mechanical Sciences, 2018,144:427-437.
[19] WANG C Z, RAMKRISHNAN K R, KRISHNANA S, et al. Homogenized shell element-based modeling of low-velocity impact response of stainless-steel wire mesh[J]. Mechanics of Advanced Materials and Structures, 2020,11(3):21-38.
[20] MASUMI H, MAKOTO T, YASUHIRO A, et al. Hypervelocity impact tests against metallic meshes[J]. International Journal of Impact Engineering, 2006,33(1):335-342.
[21] BOSCARIOL C, CHANDRA S, SARKER D, et al. Drop impact onto attached metallic meshes: liquid penetration and spreading[J]. Experiments in Fluids, 2018,59(12):189.
[22] KUMAR A, TRIPATHY A, NAM Y, et al. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes[J]. Soft Matter, 2018,14(9):1571-1580.
[23] LEE C G. Changes of pulling-out length and shrinkage ratio in polyester/spandex power net warp knitted fabrics[J]. Fibers and Polymers, 2006,7(1):51-56.
[24] 李楠, 蒋金华, 邵光伟, 等. 经编网格织物的性能研究[J].针织工业, 2016(1):23-27.
LI Nan, JIANG Jinhua, SHAO Guangwei, et al. Research on the performance of warp-knitted mesh fabric[J]. Knitting Industries, 2016(1):23-27.
[25] 邵慧奇, 李建娜, 邵光伟, 等. 复合材料增强用经编网格结构的性能对比[J].玻璃钢/复合材料, 2018(10):76-81.
SHAO Huiqi, LI Jianna, SHAO Guangwei, et al. Performance comparison of typical warp knitted meshes for composite reinforcement[J]. Fiber Reinforced Plastics/Composites, 2018(10):76-81.
[26] 常玉萍, 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017,38(9):59-65.
CHANG Yuping, MA Pibo. Model and tensile performance of negative Poisson's ratio warp-knitted spacer structures based on mesh structure[J]. Journal of Textile Research 2017,38(9):59-65.
[27] GHORBANI V, JEDDI A A A, DABIRVAN H. Theoretical and experimental investigation of tensile properties of net warp-knitted spacer fabrics[J]. The Journal of The Textile Institute, 2020,111(4):35-48.
[28] 郭成蹊. 少梳栉经编网眼织物结构与变形研究[D]. 武汉:武汉纺织大学, 2018: 27-34.
GUO Chengxi. The study of structure and deformation of warp knitted mesh fabric with less guide bars[D]. Wuhan: Wuhan Textile University, 2018: 27-34.
[29] KURBAK A. Models for basic warp knitted fabrics: part I: chain stitches and their applications on marquisette and weft-inserted warp-knitted fabrics[J]. Textile Research Journal, 2019,89(10):1-23.
[30] 杨恩惠, 邱华, 代文杰. 基于六边形网格结构的针织物三维建模[J]. 纺织学报, 2019,40(11):69-74.
YANG Enhui, QIU Hua, DAI Wenjie. Three-dimensional modeling and analysis of knitted fabric based on hexagonal mesh structure[J]. Journal of Textile Research, 2019,40(11):69-74.
[31] GENG X J, LIU L, YAN J H, et al. A new three-dimensional braiding method for net shape fabrication of a complex perform with rounding chamfer[J]. Journal of Reinforced Plastics and Composites, 2013,32(13):964-973.
[32] ZHAI G, YUE Q, LIANG B, et al. On-orbit capture with flexible tether-net system[J]. Acta Astronautica, 2009,65:613-623.
[1] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[2] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[3] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[4] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[5] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[6] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[7] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[8] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[9] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[10] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[11] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[12] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[13] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[14] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[15] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!