纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 112-117.doi: 10.13475/j.fzxb.20200503806

• 染整与化学品 • 上一篇    下一篇

高导电性铜/聚吡咯涂层羊毛织物的制备与表征

于佳, 辛斌杰(), 卓婷婷, 周曦   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2020-05-18 修回日期:2020-10-22 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 辛斌杰
  • 作者简介:于佳(1998—),女,硕士生。主要研究方向为柔性可穿戴。
  • 基金资助:
    上海工程技术大学研究生科研创新项目(20KY0901);志宏计划资助项目(2018RC032017)

Preparation and characterization of Cu/polypyrrole-coated wool fabrics for high electrical conductivity

YU Jia, XIN Binjie(), ZHUO Tingting, ZHOU Xi   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2020-05-18 Revised:2020-10-22 Online:2021-01-15 Published:2021-01-21
  • Contact: XIN Binjie

摘要:

为研究等离子体处理时间对铜/聚吡咯/羊毛复合织物的导电性能,拓展羊毛织物在柔性传感器领域的应用,利用等离子体气相沉积技术对羊毛进行去鳞片化处理,依次对羊毛织物预处理300、600、900、1 200 s,然后在羊毛织物表面原位聚合构建聚吡咯膜层,并用磁控溅射沉积铜薄膜增强纤维表面的导电网络;借助扫描电子显微镜、傅里叶红外光谱仪和热重分析仪等手段表征了铜/聚吡咯/羊毛导电织物的结构和导电性,同时研究了铜/聚吡咯/羊毛导电复合织物的力学性能。结果表明:等离子体处理时间为1 200 s时制备的铜/聚吡咯涂层毛织物具有良好的导电性和力学性能,平均方阻为67.32 Ω/□;经水洗2 h后,铜/聚吡咯涂层毛织物的方阻优于未经等离子体处理的聚吡咯/羊毛织物,耐水洗性能较稳定。

关键词: 羊毛织物, 等离子体处理, 聚吡咯, 磁控溅射, 导电性能, 柔性传感器

Abstract:

This research was carried out aiming to study the conductivity of Cu/polypyrrole/wool composite fabrics affected by plasma treatment time and to expand the application of wool fabric in the field of flexible sensor. Firstly, the wool fiber descaling was carried out using plasma vapor deposition technology by treating the wool fabric for 300, 600, 900 and 1 200 s treatment time, before a polypyrrole membrane was constructed by in-situ polymerization on the surface of wool fabric. Cu was then deposited by magnetron sputtering(Cu) film enhancing the conductive network on the surface of the fiber. The structure and conductivity of Cu/polypyrrole/wool conductive fabric were characterized by means of scanning electron microscope, Fourier transform infrared spectrometer and thermogravimetric analyzer. The mechanical properties of Cu/polypyrrole/wool conductive composite fabric were also studied. The results show that the Cu/polypyrrole coated wool fabric with treatment time of 1 200 s demonstrates the highest electrical conductivity and mechanical property, and the average square resistance is 67.32 Ω/□. After washing for 2 h, the square resistance of cu/polypyrrole coated wool fabric is better than that of Polypyrrole/wool fabric without plasma treatment, and the washing resistance is stable.

Key words: wool fabric, plasma treatment, polypyrrole, magnetron sputtering, conductivity, flexible sensor

中图分类号: 

  • TS131.8

图1

铜/聚吡咯涂层羊毛高导电复合织物的制备过程"

图2

不同等离子体处理时间下羊毛织物的扫描电镜照片(×500)"

图3

羊毛织物及复合羊毛织物的扫描电镜照片(×500) 注:织物均经等离子体处理1 200 s。"

图4

等离子体处理前后羊毛织物及复合羊毛织物的热重分析(TGA)曲线图"

图5

等离子体处理前后羊毛织物及复合羊毛织物的红外光谱图"

图6

不同等离子体处理时间的导电织物的方阻"

图7

等离子体处理前后羊毛织物及复合羊毛织物的力学性能"

表1

处理前后羊毛织物水洗后的方阻值"

试样
编号
不同水洗时间处理后织物方阻值
0.0 h 0.5 h 1.0 h 1.5 h 2 h
8 303 921 5 500 6 070 17 300
1 101 707 3 040 6 800 8 800
4 67.32 582 2 970 3 750 5 700
[1] AMIADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Advanced Functional Materials, 2016,26(11):1678-1698.
[2] EGAMIY, SUZUKI K, TANAKA T, et al. Preparation and characterization of conductive fabrics coated uniformly with polypyrrole nanoparticles[J]. Synthetic Metals, 2011,161(3/4):0-224.
[3] PASTA M, HU L, MANTIA F L, et al. Electrodeposited gold nanoparticles on carbon nanotube-textile: anode material for glucose alkaline fuel cells[J]. Electrochemistry Communications, 2012,19:81-84.
[4] 董猛, 田俊莹. 聚吡咯/银导电涤纶织物的开发[J]. 印染, 2015,526(22):23-26.
DONG Meng, TIAN Junying. Preparation of polypyrrole/Ag conductive polyester fabric[J]. China Dyeing & Finishing, 2015,526(22):23-26.
[5] XU H, PENG S, WANG C, et al. Influence of absorbed moisture on antifelting property of wool treated with atmospheric pressure plasma[J]. Journal of Applied Polymer Science, 2009,113(6):3687-3692.
[6] WANG X, SHEN X, XU W. Effect of hydrogen peroxide treatment on the properties of wool fabric[J]. Applied Surface Ence, 2012,258(24):10012-10016.
[7] 袁小红, 魏取福, 陈东生, 等. 磁控溅射工艺参数对涤纶机织物基纳米金属薄膜抗静电性能的影响[J]. 材料科学与工程学报, 2014(6):76-80.
YUAN Xiaohong, WEI Qufu, CHEN Dongsheng, et al. Influence of process parameters on antistatic property of metal thin film by magnetron sputtering on polyester fabric[J]. Journal of Materials Science and Engineering, 2014(6):76-80.
[8] 陈芊妤. 纳米银/聚苯胺复合薄膜的制备及热电性能的研究[D]. 北京:北京化工学院, 2016: 15-37.
CHEN Qianyu. Preparation and thermoelectric properties of nano Ag/polyaniline composite films[D]. Beijing: Beijing Institute of Chemical Technology, 2016: 15-37.
[9] 乐珮珮, 王少伟, 李晓强, 等. 氧化还原一步法制备聚苯胺/银复合导电织物[J]. 纺织学报, 2014,35(4):37-42.
LE Peipei, WANG Shaowei, LI Xiaoqiang, et al. Preparation of polyaniline/Ag composite conductive fabric via one-step oxidation-reduction reaction[J]. Journal of Textile Research, 2014,35(4):37-42.
[10] 李超荣, 舒顺新, 谢勇, 等. 磁控溅射纳米纤维基银膜的结构和性能[J]. 纺织学报, 2014,35(4):32-36.
LI Chaorong, SHU Shunxin, XIE Yong, et al. Structure and properties of Ag films based on magnetron sputtering nanofibers[J]. Journal of Textile Research, 2014,35(4):32-36.
[11] 俞俭, 逄增媛, 魏取福. 银/聚苯胺/羊毛复合导电织物的制备及性能[J]. 材料科学与工程学报, 2018,36(6):37-41.
YU Jian, PANG Zengyuan, WEI Qufu. Preparation and properties of Ag/polyaniline/wool composite conductive fabric[J]. Journal of Materials Science and Engineering, 2018,36(6):37-41.
[12] 王秀莲, 贺晓亚. 等离子体处理对羊毛织物性能的影响[J]. 上海纺织科技, 2018,46(9):38-40.
WANG Xiulian, HE Xiaoya. Effect of plasma treatment on wool fabric properties[J]. Shanghai Textile & Technology, 2018,46(9):38-40.
[13] 金郡潮, 戴瑾瑾. 氧等离子体处理羊毛活性染料染色的研究[J]. 纺织学报, 2002,23(1):5-7.
JIN Junchao, DAI Jinjin. An investigation into reactive dyeing of oxygen plasma modified wool[J]. Journal of Textile Research, 2002,23(1):5-7.
[14] 吴惠英. 等离子体处理对羊毛纱线吸湿性能的影响[J].针织工业, 2018(6):50-53.
WU Huiying. The effect on the moisture permeability of wool treated by plasma[J]. Knitting Industries, 2018(6):50-53.
[15] 刘川美. 利用磁控溅射技术制备多功能导电纺织品及其稳定性的研究[D]. 青岛:青岛大学, 2020: 3-43.
LIU Chuanmei. Preparation and stability of multifunctional conductive textiles by magnetron sputtering[D]. Qingdao: Qingdao University, 2020: 3-43.
[16] 谭学强. 磁控溅射纳米Cu膜织物导电性能研究[D]. 天津:天津工业大学, 2019: 1-30.
TAN Xueqiang. Study on electrical conductivity of nano Cu film fabric by magnetron sputtering[D]. Tianjin: Tiangong University, 2019: 1-30.
[17] 王文聪, 范静静, 丁超, 等. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019,40(8):117-123.
WANG Wencong, FAN Jingjing, DING Chao, et al. Preparation and properties of multifunctional composite conductive wool fabric[J]. Journal of Textile Research, 2019,40(8):117-123.
[1] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[2] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[3] 陈千, 廖振, 徐明, 朱亚伟. 等离子体处理对聚四氟乙烯膜粘接性能的影响[J]. 纺织学报, 2020, 41(08): 15-21.
[4] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[5] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[6] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
[7] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[8] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[9] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[10] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[11] 林佳濛, 缪旭红, 万爱兰. 等离子体预处理对聚吡咯/涤纶经编导电织物结构和性能的影响[J]. 纺织学报, 2019, 40(09): 97-101.
[12] 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100.
[13] 王文聪, 范静静, 丁超, 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(08): 117-123.
[14] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[15] 安芳芳, 房宽峻, 刘秀明, 蔡玉青, 韩双, 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!