纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 103-111.doi: 10.13475/j.fzxb.20200505909

• 染整与化学品 • 上一篇    下一篇

自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能

曾凡鑫1,2, 秦宗益1,2(), 沈玥莹1, 陈园余1, 胡铄2   

  1. 1.东华大学 纤维材料改性国家重点实验室, 上海 201620
    2.东华大学 材料科学与工程学院, 上海 201620
  • 收稿日期:2020-05-29 修回日期:2020-10-25 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 秦宗益
  • 作者简介:曾凡鑫(1991—),男,博士。主要研究方向为纳米功能涂层与表面处理技术。
  • 基金资助:
    教育部创新研究团队计划项目(IRT_16R13);中央高校基本科研业务费专项资金资助项目(CUSF-DH-D-2017040)

Preparation and flame retardant properties of self-extinguishing cotton fabrics by spray-assisted layer-by-layer self-assembly technology

ZENG Fanxin1,2, QIN Zongyi1,2(), SHEN Yueying1, CHEN Yuanyu1, HU Shuo2   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2020-05-29 Revised:2020-10-25 Online:2021-01-15 Published:2021-01-21
  • Contact: QIN Zongyi

摘要:

为赋予棉织物高效阻燃的特性,采用喷涂辅助层层自组装技术在棉织物表面将3-氨基丙基三乙氧基硅烷、海藻酸钠和聚磷酸铵构筑三元复合涂层。借助扫描电子显微镜、热重分析、垂直燃烧和微型燃烧量热仪等研究了棉织物在涂层处理前后的表面形貌、燃烧性能和热降解性能。结果表明:经涂层处理棉织物可实现离火自熄,其极限氧指数最大可达35.7%,并具有一定的耐水洗性;棉织物优异的结构稳定性和阻燃性可归因于表面结构良好的阻燃复合涂层以及磷、氮、硅元素在其热降解和成炭过程中的协同作用;这种用于设计和制造膨胀型阻燃涂层的技术也可用于其他各种纤维素纤维。

关键词: 棉织物, 功能织物, 阻燃性能, 层层自组装, 阻燃涂料

Abstract:

In order to endow the cotton fabric with high efficiency flame retardant properties, a new low-cost and green approach was presented for constructing ternary composite coating on cotton fabric through spray-assisted layer-by-layer self-assembly of 3-aminopropyltriethoxysilane, sodium alginate and ammonium polyphosphate in aqueous solutions. The surface morphology, flammability and thermal degradation properties of the cotton fabrics before and after coating were investigated by scanning electron microscopy, thermogravimetric analysis, vertical flame tests and microscale combustion calorimetry. The results show that coated cotton fabrics self-extinguish instantly when the ignition source is removed, and its limit oxygen index reaches 35.7% together with good washing resistance. High structural stability and flame retardant property are attributed to the external well-constructed flame retardant composite multilayers and phosphorus-silicon-nitrogen synergism on the degradation process and char yield. Such green and scalable strategy for the design and fabrication of self-extinguishing intumescent coating could also be employed for treating various other cellulose fibers.

Key words: cotton fabric, functional fabric, flame retardant property, layer-by-layerself-assembly, flame retardant coating

中图分类号: 

  • TS195

图1

纯棉织物和涂层棉织物的扫描电镜照片"

图2

纯棉织物和涂层棉织物的红外光谱图"

图3

棉织物涂层处理前后不同氛围下的TGA和DTG曲线"

表1

涂层处理前后棉织物的LOI值和在空气和氮气气氛下的TGA数据"

样品 极限
氧指
数值/%
初始降解
温度/℃
最大热降解
温度/℃
700 ℃残
炭量/%
空气 氮气 空气 氮气 空气 氮气
纯棉织物 18.1 265.5 264.5 361.6 379.9 1.0 8.6
5层 20.9 234.5 228.2 291.1 315.2 14.5 35.8
10层 22.3 214.0 223.8 288.8 292.6 19.8 43.0
15层 35.7 227.5 221.8 287.5 287.1 22.8 47.4

表2

纯棉织物与涂层棉织物的垂直燃烧数据"

样品 质量增加率/
%
燃烧
时间/s
阴燃
时间/s
炭长/cm
纯棉织物 0.00 10 14 30
5层 11.60 16 0 30
10层 22.50 40 0 30
15层 30.60 0 0 4.9±0.1
15层(水洗后) 28.30 0 0 9.7±0.2

表3

纯棉织物与涂层棉织物的MCC数据"

样品 热释放速率峰
值/(W·g-1)
总热释放
量/(kJ·g-1)
热释放速率
峰值温度/℃
残炭
量/%
纯棉织物 277.5 ± 5.1 14.3 ± 0.38 390.8 ± 6.7 9.2
5层 38.8 ± 2.5 2.5 ± 0.16 305.5 ± 4.2 35.9
10层 20.9 ± 1.8 1.5 ± 0.08 288.5 ± 3.0 41.7
15层 15.4 ± 1.0 1.1 ± 0.01 272.1 ± 2.5 47.9

图4

纯棉织物和15层棉织物在热降解过程中气相产物的三维图"

图5

部分气相产物的红外光谱图"

图6

炭渣的扫描电镜照片"

图7

涂层处理前后棉织物的炭渣的拉曼光谱图"

图8

涂层棉织物垂燃烧后残炭的XPS谱图"

[1] QIU X, LI Z, LI X, et al. Flame retardant coatings prepared using layer by layer assembly: a review[J]. Chemical Engineering Journal, 2018,334(15):108-122.
[2] ALONGI J, MALUCELLI G. Cotton flame retardancy: state of the art and future perspectives[J]. RSC Advances, 2015,5(31):24239-24263.
[3] LI Z, ZHANG C, CUI L, et al. Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly[J]. Journal of Analytical and Applied Pyrolysis, 2017,123:216-223.
[4] PAN H F, WANG W, PAN Y, et al. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer-by-layer assembly of chitin deriva-tives[J]. Carbohydrate Polymers, 2015,115(22):516-524.
[5] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019,40(12):79-85.
SUN Yufa, ZHOU Xiangdong. Synjournal and characterization of novel phosphorous and nitrogen-containing flame reardant for cotton fabrics[J]. Journal of Textile Research, 2019,40(12):79-85.
[6] ALONGI J, CAROSIO F, MALUCELLI G. Current emerging techniques to impart flame retardancy to fabrics: an overview[J]. Polymer Degradation and Stability, 2014,106:138-149.
[7] YANG H T, YU B, SONG P G, et al. Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review[J]. Composites Part B: Engineering, 2019,176(1):107185.
[8] RICHARDSON J J, BJÖRNMALM M, CARUSO F. Technology-driven layer-by-layer assembly of nano-films [J]. Science, 2015, 348(6233):aaa2491.
[9] CAROSIO F, ALONGI J, MALUCELLI G. Layer by layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends[J]. Carbohydrate Polymers, 2012,88(4):1460-1469.
[10] FANG F, ZHANG X, MENG Y, et al. Intumescent flame retardant coatings on cotton fabric of chitosan and ammonium polyphosphate via layer-by-layer assembly[J]. Surface & Coatings Technology, 2015,262(25):9-14.
[11] LIU Y, WANG Q Q, JIANG Z M, et al. Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly[J]. Journal of Analytical and Applied Pyrolysis, 2018,135:289-298.
[12] WANG Y L, YANG X M, PENG H, et al. Layer-by-layer assembly of multifunctional flame retardant based on brucite, 3-aminopropyltriethoxysilane, and alginate and its applications in ethylene-vinyl acetate resin[J]. ACS Applied Materials & Interfaces, 2016,8(15):9925-9935.
doi: 10.1021/acsami.6b00998 pmid: 27002922
[13] 范静静, 王鸿博, 傅佳佳, 等. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019,40(4):90-95.
FAN Jingjing, WANG Hongbo, FU Jiajia, et al. Preparation of composite conductive cotton fabric based on carbon nanotubes by layer-by-layer self-assembly[J]. Journal of Textile Research, 2019,40(4):90-95.
[14] IZQUIERDO A, ONO S S, VOEGEL J C, et al. Dipping versus spraying: exploring the deposition conditions for speeding up layer-by-layer assembly[J]. Langmuir, 2005,21(16):7558-7567.
doi: 10.1021/la047407s pmid: 16042495
[15] ALONGI J, CAROSIO F, FRACHE A, et al. Layer by layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy[J]. Carbohydrate Polymers, 2013,92(1):114-119.
doi: 10.1016/j.carbpol.2012.08.086 pmid: 23218273
[16] ORTEGA E, ZAVALA G, GRACIA-PINILLA M A, et al. Spray-assisted layer-by-layer assembly of decorated PEI/PAA films: morphological, growth and mechanical behavior[J]. Journal of Coatings Technology and Research, 2017,14(4):927-935.
doi: 10.1007/s11998-016-9896-z
[17] WANG Y L, LI Z P, LI Y Y, et al. Spray-drying-assisted layer-by-layer assembly of alginate, 3-aminopropyltriethoxysilane, and magnesium hydroxide flame retardant and its catalytic graphitization in ethylene-vinyl acetate resin[J]. ACS Applied Materials & Interfaces, 2018,10(12):10490-10500.
doi: 10.1021/acsami.8b01556 pmid: 29490139
[18] ZHAO L, YAN H Q, FANG Z P, et al. On the flameproof treatment of ramie fabrics using a spray-assisted layer-by-layer technique[J]. Polymer Degradation and Stability, 2015,121:11-17.
[19] ALONGI J, COLLEONI C, ROSACE G, et al. Thermal and fire stability of cotton fabrics coated with hybrid phosphorus-doped silica films[J]. Journal of Thermal Analysis and Calorimetry, 2012,110(3):1207-1216.
[20] LIU Y, PAN Y T, WANG X, et al. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synjournal, characterization and flammability[J]. Chemical Engineering Journal, 2016,294(15):167-175.
[21] LI Q, JIANG P K, SU Z P, et al. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene[J]. Journal of Applied Polymer Science, 2005,96(3):854-860.
[22] QIAN X D, SONG L, YUAN B H, et al. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system[J]. Materials Chemistry and Physics, 2014,143(3):1243-1252.
[23] 周青青, 陈嘉毅, 祁珍明, 等. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020,41(5):112-120.
ZHOU Qingqing, CHEN Jiayi, QI Zhenming, et al. Preparation and charaterization of flame retardant and antibacterial cotton fabric[J]. Journal of Textile Research, 2020,41(5):112-120.
[24] FANG F, XIAO D Z, ZHANG X, et al. Construction of intumescent flame retardant and antimicrobial coating on cotton fabric via layer-by-layer assembly technology[J]. Surface & Coatings Technology, 2015,276(25):726-734.
[25] LIN D M, ZENG X G, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019,533(1):198-206.
[26] CHANG S, SLOPEK R P, CONDON B, et al. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process[J]. Industrial & Engineering Chemistry Research, 2014,53(10):3805-3812.
[27] HAILE M, FINCHER C, FOMETE S, et al. Water-soluble polyelectrolyte complexes that extinguish fire on cotton fabric when deposited as pH-cured nano-coating[J]. Polymer Degradation and Stability, 2015,114:60-64.
doi: 10.1016/j.polymdegradstab.2015.01.022
[28] ZHANG D Q, WILLIAMS B L, SHRESTHA S B, et al. Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques[J]. Journal of Colloid and Interface Science, 2017,505(1):892-899.
[1] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[2] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[3] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[4] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[5] 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020, 41(10): 178-187.
[6] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[7] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[8] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[9] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[10] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[11] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[12] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[13] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
[14] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[15] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!