纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 180-188.doi: 10.13475/j.fzxb.20200603809

• 综合述评 • 上一篇    下一篇

剪切增稠液/纤维复合材料防弹性能的研究进展

张倩玉1, 秦志刚1,2, 阎若思1,2(), 贾立霞1,2   

  1. 1. 河北科技大学 纺织服装学院, 河北 石家庄 050018
    2. 河北科技大学 河北省纺织服装技术创新中心, 河北 石家庄 050018
  • 收稿日期:2020-06-15 修回日期:2021-01-10 出版日期:2021-06-15 发布日期:2021-06-28
  • 通讯作者: 阎若思
  • 作者简介:张倩玉(1996—),女,硕士生。主要研究方向为剪切增稠纺织复合材料。
  • 基金资助:
    河北省自然科学基金青年基金项目(E2019208424);河北省高等学校科学技术研究项目(QN2018038);河北省青年拔尖人才支持计划(2018-27)

Research progress on bulletproof properties of shear thickening fluid/high performance fiber composites

ZHANG Qianyu1, QIN Zhigang1,2, YAN Ruosi1,2(), JIA Lixia1,2   

  1. 1. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    2. Hebei Technology Innovation Center for Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • Received:2020-06-15 Revised:2021-01-10 Published:2021-06-15 Online:2021-06-28
  • Contact: YAN Ruosi

摘要:

为促进对剪切增稠液(STF)与高性能纤维复合形成具有高效力学响应和能量吸收机制的智能抗冲击防护材料的性能研究和应用,综述了STF流变性能、STF/纤维复合材料力学性能及其抗弹道冲击机制的研究进展,分析了STF原料选择、复合材料体系构建原理及制备方法。针对STF/纤维复合材料的弹道冲击过程和特点及其在高速冲击下的反应机制,探讨影响弹道冲击性能的因素并提出解决方案。展望了高响应度的柔性智能STF/纤维防弹复合材料的研究发展方向,指出对柔性智能STF/纤维防弹复合材料的表征和评价方法尚需完善,基于三维自增强结构、纤维材料与STF界面结合性、流变滑移及摩擦特性是未来防弹复合材料的研究重点。

关键词: 剪切增稠, 防弹机制, 纤维增强复合材料, 流变性能, 防弹性能

Abstract:

In order to promote the research and applications of intelligent impact protection materials, this paper reviewed the progress in shear thickening fluid (STF) impregnated high-performance fibers, summarizing their effective mechanical response and energy absorption mechanism upon high velocity impact. The research progress of STF rheological properties, mechanical properties of STF/fiber composites and their anti-ballistic impact mechanisms were reviewed. The selection of STF raw material, the construction principle of composite material system and the preparation method were analyzed. According to the characteristics of ballistic impact process and the reaction mechanisms of STF/fiber composites under high velocity impact, the factors affecting ballistic impact performance were discussed and perspective solutions proposed. The research direction of flexible and intelligent STF/fiber bullet proof composites with high responsiveness is forecasted, and it was made clear that the characterization and evaluation methods of flexible and intelligent STF/fiber bulletproof composites still need improving. The composites based on the three-dimensional self-reinforcing structures, the interfacial bonding between fiber material and STF, the rheological slip and friction characteristics are the key research points in the future.

Key words: shear thickening, bulletproof mechanism, fiber reinforced composite, rheological property, bulletproof property

中图分类号: 

  • TB332

图1

STF增稠机制示意图"

图2

STF的流变曲线"

图3

防弹机制示意图"

表1

STF的制备方法及组成"

分散相(质量分数) 分散介质 单相/多相 制备方法 参考文献
气相SiO2(10%~40%) 聚乙二醇(PEG) 单相 高速分散器 [17]
SiO2颗粒(60%、65%) PEG 单相 机械+超声波搅拌 [18-19]
亚微米SiO2(65%) PEG 单相 匀浆器+超声波搅拌 [19]
改性SiO2(50%) PEG 单相 超声波搅拌 [20]
CaCO3(10%~40%) PEG 单相 高速剪切机+超声波搅拌 [21]
玉米淀粉(43%、55%) 单相 超声波搅拌 [7]
SiO2(50%~64%) 离子液体 单相 超声波搅拌 [11]
聚氯乙烯(47%~57%) 邻苯二甲酸二辛酯 单相 机械搅拌 [22]
聚甲基丙烯酸甲酯(51%) PEG 单相 机械搅拌 [23]
SiO2(20%)/SiC(45%) PEG 多相 高速分散器 [24]
SiO2(44%)/CNT(0.8%) PEG 多相 高速剪切机 [25-26]
Si(20%)/SiC(5%、25%、45%) PEG 多相 高速分散器 [27]
SiO2(10%、17.5%、25%)/
硅烷偶联剂(18%、28%、38%)
PEG 多相 超声波搅拌 [28-29]
Si(25%、50%、75%)/CaCO3(75%、50%、25%) PEG 多相 高速剪切机+超声波搅拌 [21]
聚苯乙烯丙烯酸酯(53.5%)/CNT(1%、1.5%) PEG 多相 超声波搅拌 [30]

表2

STF/纤维复合材料增强体结构类型"

纤维名称 纤维名称 织物结构 增强体类型 与STF复合方法 参考文献
芳纶 Kevlar?? 平纹
斜纹
非织造布
叠层
叠层
叠层
浸渍
浸渍
浸渍
[19]
[32]
[11]
非织造布 叠层 涂层 [21]
Kevlar??/铝板 层合板结构 多元复合结构 浸渍 [33]
Kevlar??/玻璃纤维 经编间隔织物 三维结构 填充 [34]
HT-840(Heracron??) 平纹 叠层 浸渍 [35]
平纹 叠层 涂层 [36]
Twaron?? 平纹 叠层 浸渍 [16]
芳纶/碳纤维 三明治蜂窝芯结构 多元复合结构 填充 [37]
芳纶 三维正交 三维结构 浸渍 [38]
超高分子量聚乙烯
(UHMWPE)
UHMWPE 平纹 叠层 浸渍 [39-40]
UHMWPE 单向织物 叠层 浸渍 [41]
UHMWPE/发泡材料 层合板结构 多元复合结构 浸渍 [42]
其他 高模聚丙烯 平纹 叠层 浸渍 [25]
涤纶 经编间隔织物 三维结构 填充 [43-44]

表3

防弹性能的主要影响因素及影响方式"

影响类型 影响因素 影响方式 参考文献
纤维 种类 断裂强度 [49?-51]
线密度 颗粒附着量 [35]
织物 密度 纱线间摩擦力 [35]
组织结构 应力传递 [45-46]
结构 叠层结构(层数/顺序/角度/叠层方式) 强度/材料延伸率/应力传递/整体性 [52,19,16,21]
三明治结构 粒子团聚 [43]
多元复合结构 应力/应变 [48]
三维结构 整体性 [38]
纳米填料 种类 黏度 [19,53]
粒径 临界剪切速率 [54]
含量 粒子团聚数量 [19,53,55]
是否改性 粒子团聚速度 [56]
多类 摩擦力/强度 [40,57-58]
复合方式 浸渍 渗透进内部 [18]
喷涂 附着于表面 [21]
填充 膨胀程度 [37]
环境 温湿度 断裂强力/布朗运动 [59]
PH值 布朗运动
子弹 大小 冲击区域 [2]
形状 冲击区域 [48]
速度 剪切速率 [15,60]
[1] CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates[J]. Composite Structures, 2003, 61(1):161-173.
doi: 10.1016/S0263-8223(03)00029-1
[2] LU Z, YUAN Z, CHEN X, et al. Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact[J]. Composite Structures, 2019, 227:111208.
doi: 10.1016/j.compstruct.2019.111208
[3] WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10):27-32.
[4] GALINDOROSALES F J, MARTINEZARANDA S, CAMPODEANO L. CorkSTFμfluidics:a novel concept for the development of eco-friendly light-weight energy absorbing composites[J]. Materials & Design, 2015, 82(3):26-34.
[5] MARANZANO B J, WAGNER N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions[J]. Journal of Chemical Physics, 2001, 114(23):10514-10527.
doi: 10.1063/1.1373687
[6] HOFFMAN R L. Discontinuous and dilatant viscosity behavior in concentrated suspensions. i. observation of a flow instability[J]. Transactions of the Society of Rheology, 1972, 16(1):155-173.
doi: 10.1122/1.549250
[7] BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. Journal of Chemical Physics, 1989, 91(3):1866-1874.
doi: 10.1063/1.457091
[8] FALL A, HUANG N, BERTRAND F, et al. Shear thickening of cornstarch suspensions as a reentrant jamming transition[J]. Physical Review Letters, 2008, 100(1):018301.
doi: 10.1103/PhysRevLett.100.018301
[9] BROWN E. Friction's role in shear thickening[J]. Physics, 2013, 6:125.
[10] GURGEN S, SOFUOGLU M A, KUSHAN M C. Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model[J]. Smart Materials and Structures, 2019, 28(3):035027.
doi: 10.1088/1361-665X/ab018c
[11] QIN J, GUO B, ZHANG L, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid[J]. Composites Part B:Engineering, 2020, 183:107686.
doi: 10.1016/j.compositesb.2019.107686
[12] ALI A, SHAKER Z R, KHALINA A, et al. Development of anti-ballistic board from ramie fiber[J]. Polymer-Plastics Technology and Engineering, 2011, 50(6):622-634.
doi: 10.1080/03602559.2010.551381
[13] CARR D J. Failure mechanisms of yarns subjected to ballistic impact[J]. Journal of Materials Science Letters, 1999, 18(7):585-588.
doi: 10.1023/A:1006655301587
[14] CHEN X, ZHU F, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B:Engineering, 2013, 45(1):1508-1514.
doi: 10.1016/j.compositesb.2012.08.005
[15] KHODADADI A, LIAGHAT G, VAHID S, et al. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid[J]. Composites Part B: Engineering, 2019, 162:643-652.
doi: 10.1016/j.compositesb.2018.12.121
[16] ARORA S, MAJUMDAR A, BUTOLA B S. Soft armour design by angular stacking of shear thickening fluid impregnated high-performance fabrics for quasi-isotropic ballistic response[J]. Composite Structures, 2020, 233:111720.
doi: 10.1016/j.compstruct.2019.111720
[17] GURGEN S, YILDIZ T. Stab resistance of smart polymer coated textiles reinforced with particle addi-tives[J]. Composite Structures, 2020, 235:111812.
doi: 10.1016/j.compstruct.2019.111812
[18] KIM Y, KUMAR S K S, PARK Y, et al. High-velocity impact onto a high-frictional fabric treated with adhesive spray coating and shear thickening fluid impregna-tion[J]. Composites Part B-Engineering, 2020, 185:107742.
doi: 10.1016/j.compositesb.2020.107742
[19] BAJYA M, MAJUMDAR A, BUTOLA B S, et al. Design strategy for optimising weight and ballistic performance of soft body armour reinforced with shear thickening fluid[J]. Composites Part B: Engineering, 2020, 183:107721.
doi: 10.1016/j.compositesb.2019.107721
[20] SAHOO S K, MISHRA S, ISLAM E, et al. Tuning shear thickening behavior via synthesis of organically modified silica to improve impact resistance of Kevlar fabric[J]. Materials Today Communications, 2020, 23:100892.
doi: 10.1016/j.mtcomm.2020.100892
[21] AVILA A F, DE OLIVEIRA A M, LEAO S G, et al. Aramid fabric/nano-size dual phase shear thickening fluid composites response to ballistic impact[J]. Composites Part A:Applied Science and Manufacturing, 2018, 112(4):68-74.
[22] EGRES R G, NETTESHEIM F, WAGNER N J. Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transition[J]. Journal of Rheology, 2006, 50(5):685-709.
doi: 10.1122/1.2213245
[23] CHENG X, MCCOY J, ISRAELACHVILI J N, et al. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions[J]. Science, 2011, 333(6047):1276-1279.
doi: 10.1126/science.1207032
[24] GURGEN S. Numerical modeling of fabrics treated with multi-phase shear thickening fluids under high velocity impacts[J]. Thin-walled Structures, 2020, 148:106573.
doi: 10.1016/j.tws.2019.106573
[25] HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88(2):63-71.
[26] CHEN Q, LIU M, XUAN S, et al. Shear dependent electrical property of conductive shear thickening fluid[J]. Materials & Design, 2017, 121:92-100.
[27] GÜRGEN S, KUŞHAN M C. The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids[J]. Polymer Testing, 2017, 64:296-306.
doi: 10.1016/j.polymertesting.2017.11.003
[28] SANTOS T F D, SANTOS C M D S, AQUINO M S D, et al. Statistical study of performance properties to impact of Kevlar ® woven impregnated with Non-Newtonian Fluid (NNF) [J]. Journal of materials research and technology, 2020.
[29] SANTOS T F, SANTOS C M S, AQUINO M S, et al. Influence of silane coupling agent on shear thickening fluids (STF) for personal protection[J]. Journal of Materials Research and Technology, 2019, 8(5):4032-4039.
doi: 10.1016/j.jmrt.2019.07.013
[30] CAO S, PANG H, ZHAO C, et al. The CNT/PSt-EA/Kevlar composite with excellent ballistic perfor-mance[J]. Composites Part B:Engineering, 2020, 185:107793.
doi: 10.1016/j.compositesb.2020.107793
[31] POLANSKI M, BYSTRZYCKI J. The influence of different additives on the solid-state reaction of magnesium hydride (MgH 2) with Si [J]. International Journal of Hydrogen Energy, 2009, 34(18):7692-7699.
doi: 10.1016/j.ijhydene.2009.06.002
[32] 朱文佳, 汪泽幸, 祝振威, 等. STF/Kevlar复合材料的制备与冲击撕裂性能[J]. 产业用纺织品, 2018, 36(12):41-44.
ZHU Wenjia, WANG Zexing, ZHU Zhenwei, et al. Preparation and impact tearing performance of STF/Kevlar composites[J]. Technical Textiles, 2018, 36(12):41-44.
[33] HARO E E, ODESHI A G, SZPUNAR J A. The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact[J]. International Journal of Impact Engineering, 2016, 96:11-22.
doi: 10.1016/j.ijimpeng.2016.05.012
[34] CHATTERJEE V A, VERMA S K, BHATTACHARJEE D, et al. Enhancement of energy absorption by incorporation of shear thickening fluids in 3D-mat sandwich composite panels upon ballistic impact[J]. Composite Structures, 2019, 225:111148.
doi: 10.1016/j.compstruct.2019.111148
[35] KIM Y, PARK Y, CHA J, et al. Behavior of shear thickening fluid (STF) impregnated fabric composite rear wall under hypervelocity impact[J]. Composite Structures, 2018, 204:52-62.
doi: 10.1016/j.compstruct.2018.07.064
[36] NA W, AHN H, HAN S, et al. Shear behavior of a shear thickening fluid-impregnated aramid fabrics at high shear rate[J]. Composites Part B: Engineering, 2016, 97:162-175.
doi: 10.1016/j.compositesb.2016.05.017
[37] FU K, WANG H, CHANG L, et al. Low-velocity impact behaviour of a shear thickening fluid (STF) and STF-filled sandwich composite panels[J]. Composites Science and Technology, 2018, 165:74-83.
doi: 10.1016/j.compscitech.2018.06.013
[38] MAJUMDAR A, LAHA A, BHATTACHARJEE D, et al. Tuning the structure of 3D woven aramid fabrics reinforced with shear thickening fluid for developing soft body armour[J]. Composite Structures, 2017, 178:415-425.
doi: 10.1016/j.compstruct.2017.07.018
[39] ARORA S, MAJUMDAR A, BUTOLA B S. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics[J]. Composite Structures, 2019, 210:41-48.
doi: 10.1016/j.compstruct.2018.11.028
[40] 陆振乾, 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10):58-62,67.
LU Zhenqian, XU Yue, Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric[J]. Journal of Textile Research, 2018, 39(10):58-62,67.
[41] 王天坤, 俞科静, 钱坤, 等. 2D、3D织物结构对STF/UHMWPE复合材料高速冲击性能影响的研究[J]. 化工新型材料, 2016, 44(8):108-109,112.
WANG Tiankun, YU Kejing, QIAN Kun, et al. Influence of 2D and 3D fabric structures on the high-speed impact property of STF/UHMWPE material[J]. New Chemical Materials, 2016, 44(8):108-109,112.
[42] ASIJA N, CHOUHAN H, AMARE G S, et al. Impact response of shear thickening fluid (STF) treated ultra high molecular weight poly ethylene composites - study of the effect of STF treatment method[J]. Thin-Walled Structures, 2018, 126:16-25.
doi: 10.1016/j.tws.2017.04.025
[43] 陆振乾, 吴利伟, 孙宝忠, 等. 经编间隔织物增强柔性复合材料冲击性能[J]. 复合材料学报, 2014, 31(5):1306-1311.
LU Zhenqian, WU Liwei, SUN Baozhong, et al. Impact properties of warp knitted spacer fabric reinforced flexible composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1306-1311.
[44] LU Z, WU L, GU B, et al. Numerical simulation of the impact behaviors of shear thickening fluid impregnated warp-knitted spacer fabric[J]. Composites Part B: Engineering, 2015, 69:191-200.
doi: 10.1016/j.compositesb.2014.10.003
[45] LAHA A, MAJUMDAR A. Interactive effects of p-aramid fabric structure and shear thickening fluid on impact resistance performance of soft armor mate-rials[J]. Materials & Design, 2016, 89:286-293.
[46] OZDEMIR H, MERT E. The effects of fabric structural parameters on the tensile, bursting, and impact strengths of cellular woven fabrics[J]. Journal of The Textile Institute, 2013, 104(3):330-338.
doi: 10.1080/00405000.2012.725521
[47] XU C, WANG Y, WU J, et al. Anti-impact response of Kevlar sandwich structure with silly putty core[J]. Composites Science and Technology, 2017, 153:168-177.
doi: 10.1016/j.compscitech.2017.10.019
[48] HARO E E, SZPUNAR J A, ODESHI A G. Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar ® fabrics impregnated with shear thickening fluid [J]. Composites Part A: Applied Science and Manufacturing, 2016, 87:54-65.
doi: 10.1016/j.compositesa.2016.04.007
[49] LASSIG T R, BAGUSAT F, MAY M, et al. Analysis of the shock response of UHMWPE composites using the inverse planar plate impact test and the shock reverberation technique[J]. International Journal of Impact Engineering, 2015, 86:240-248.
doi: 10.1016/j.ijimpeng.2015.08.010
[50] FAZAL A, FANCEY K S. UHMWPE fibre-based composites: prestress-induced enhancement of impact properties[J]. Composites Part B: Engineering, 2014, 66,1-6.
doi: 10.1016/j.compositesb.2014.04.031
[51] HU D, ZHANG Y, SHEN Z, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems[J]. Ceramics International, 2017, 43(13):10368-10376.
doi: 10.1016/j.ceramint.2017.05.071
[52] STOPFORTH R, ADALI S. Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projec-tiles[J]. Defence Technology, 2019, 15(2):186-192.
doi: 10.1016/j.dt.2018.08.006
[53] MAWKHLIENG U, MAJUMDAR A. Deconstructing the role of shear thickening fluid in enhancing the impact resistance of high-performance fabrics[J]. Composites Part B: Engineering, 2019, 175,107167.
doi: 10.1016/j.compositesb.2019.107167
[54] XU Y, CHEN X, WANG Y, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017, 163:465-473.
doi: 10.1016/j.compstruct.2016.12.056
[55] LI W, XIONG D, ZHAO X, et al. Dynamic stab resistance of ultra-high molecular weight polyethylene fabric impregnated with shear thickening fluid[J]. Materials & Design, 2016, 102:162-167.
[56] 刘星, 霍俊丽, 李婷婷, 等. 等离子体处理二氧化硅对剪切增稠液体含浸芳纶织物防刺性能的影响[J]. 材料导报, 2019, 33(16):2799-2803.
LIU Xing, HUO Junli, LI Tingting, et al. Effect of plasma-treated silica on the stab resistance of shear thickening fluid impregnated aramid fabrics[J]. Materials Reports, 2019, 33(16):2799-2803.
[57] GüRGEN S, KUŞHAN M C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94:50-60.
doi: 10.1016/j.compositesa.2016.12.019
[58] GURGEN S, KUSHAN M C, LI W. The effect of carbide particle additives on rheology of shear thickening fluids[J]. Korea-Australia Rheology Journal, 2016, 28(2):121-128.
doi: 10.1007/s13367-016-0011-x
[59] FU K, WANG H, ZHANG Y X, et al. Rheological and energy absorption characteristics of a concentrated shear thickening fluid at various temperatures[J]. International Journal of Impact Engineering, 2020, 139:103525.
doi: 10.1016/j.ijimpeng.2020.103525
[60] NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study[J]. International Journal of Impact Engineering, 2019, 132:103307.
doi: 10.1016/j.ijimpeng.2019.05.021
[61] GURGEN S, CELIK O N, KUSHAN M C. Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers[J]. Composites Part B:Engineering, 2019, 173:106949.
doi: 10.1016/j.compositesb.2019.106949
[62] TOYEN D, WIMOLMALA E, SOMBATSOMPOP N, et al. Sm 2O 3/UHMWPE composites for radiation shielding applications: mechanical and dielectric properties under gamma irradiation and thermal neutron shielding [J]. Radiation Physics and Chemistry, 2019, 164:108366.
doi: 10.1016/j.radphyschem.2019.108366
[63] KARTIKEYA K, CHOUHAN H, AHMED A, et al. Determination of tensile strength of UHMWPE fiber-reinforced polymer composites[J]. Polymer Testing, 2020, 82:106293.
doi: 10.1016/j.polymertesting.2019.106293
[64] PARK J L, YOON B I, PAIK J G, et al. Ballistic performance of p-aramid fabrics impregnated with shear thickening fluid: part I: Effect of laminating sequ-ence[J]. Textile Research Journal, 2012, 82(6):527-541.
doi: 10.1177/0040517511420753
[65] XU Y, GONG X, PENG C, et al. Shear thickening fluids based on additives with different concentrations and molecular chain lengths[J]. Chinese Journal of Chemical Physics, 2010, 23(3):342-346.
doi: 10.1088/1674-0068/23/03/342-346
[1] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[2] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[3] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[4] 赵颖会, 顾迎春, 胡斐, 林佳友, 叶蓝琳, 李静静, 陈胜. 芳香族聚酰胺纳米纤维复合材料研究进展[J]. 纺织学报, 2020, 41(01): 184-189.
[5] 潘伟楠, 相恒学, 翟功勋, 倪明达, 沈家广, 朱美芳. 共聚酰胺6/66相对分子质量对其结晶和流变性能的影响[J]. 纺织学报, 2019, 40(09): 8-14.
[6] 魏海江, 江力, 张顺花. 耐高温相变蜡/聚丙烯共混物的制备及其性能[J]. 纺织学报, 2019, 40(06): 8-13.
[7] 陆振乾 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10): 58-62.
[8] 林启松 江力 汪凯 张顺花. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018, 39(08): 22-26.
[9] 耿奕 蒋金华 陈南梁. 经编四轴向玻璃纤维织物的渗透行为和渗透率[J]. 纺织学报, 2017, 38(10): 49-56.
[10] 周熠 陈晓钢 张尚勇 龚小舟. 超高分子量聚乙烯平纹织物在柔性防弹服中的应用[J]. 纺织学报, 2016, 37(4): 60-64.
[11] 郁萍华 张顺花 毛雄亮. SiO2包覆TiO2粒子与聚丙烯共混物的剪切流变性能[J]. 纺织学报, 2015, 36(08): 6-10.
[12] 柳毅琨 邱志成 刘静 金剑. 易染色聚酯熔体的流变性能[J]. 纺织学报, 2015, 36(07): 1-6.
[13] 孙西超 李艳清 詹小芳 刘双双 祝成炎. 剪切黏稠液体的制备及其性能[J]. 纺织学报, 2014, 35(8): 5-0.
[14] 韩朝锋 孙颖 徐艺榕 陈利 李嘉禄 潘宁 于长清. 头盔壳体用复合材料增强织物研究进展[J]. 纺织学报, 2014, 35(8): 116-0.
[15] 冯松 焦晓宁. 低密度聚乙烯的毛细管流变性能[J]. 纺织学报, 2013, 34(6): 13-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!