纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 16-22.doi: 10.13475/j.fzxb.20200605207

• 纤维材料 • 上一篇    下一篇

聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能

王春红1(), 李明1, 龙碧旋1, 才英杰2, 王利剑1, 左祺1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.河北科技大学 纺织与服装学院, 河北 石家庄 050080
  • 收稿日期:2020-06-17 修回日期:2021-01-03 出版日期:2021-05-15 发布日期:2021-05-20
  • 作者简介:王春红(1980—),女,教授,博士。主要研究方向为绿色环保及功能型纤维,纺织材料及绿色纺织复合材料。E-mail: wangchunhong@tiangong.edu.cn
  • 基金资助:
    国家自然科学基金项目(11802205)

Preparation and performance of polyvinyl alcohol/sodium alginate/berberine medical dressing

WANG Chunhong1(), LI Ming1, LONG Bixuan1, CAI Yingjie2, WANG Lijian1, ZUO Qi1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050080, China
  • Received:2020-06-17 Revised:2021-01-03 Online:2021-05-15 Published:2021-05-20

摘要:

为提高聚乙烯醇(PVA)/海藻酸钠(SA)医用敷料的抗菌性和耐水性能,采用黄连素(BR)为天然抗菌剂负载在医用敷料上,通过静电纺丝法制备PVA/SA/BR纳米纤维膜,并在氯化钙无水乙醇溶液中进行交联处理,对PVA/SA/BR纳米纤维膜的化学结构、抗菌性能、吸液性能以及力学性能进行表征与分析。结果表明:BR负载在PVA/SA纳米纤维上形成明显串珠,且与PVA/SA结合良好,氯化钙交联处理后PVA/SA/BR纳米纤维膜由网状变为平滑膜状;当BR质量分数为6%时,PVA/SA/BR纳米纤维膜断裂强度为1.76 MPa,其对大肠杆菌和金黄色葡萄球菌的抑菌率分别为99.41%、97.89%;当氯化钙质量分数为4%,交联时间为4 h时,PVA/SA/BR纳米纤维膜的断裂强度为4.17 MPa,吸液倍率为1 257%。

关键词: 医用敷料, 黄连素, 氯化钙交联, 抗菌性, 耐水性能, 纳米纤维膜

Abstract:

In order to improve the antibacterial and water resistance of polyvinyl alcohol (PVA)/sodium alginate (SA) medical dressings, berberine (BR) was used as a natural antibacterial agent to load on the medical dressing. The PVA/SA/BR nanofiber membrane was prepared by electrostatic spinning, and the membrane was cross-linked in calcium chloride absolute ethanol solution. The chemical structure, antibacterial performance, liquid absorption and mechanical properties of the PVA/SA/BR nanofiber membrane were characterized and analyzed. The results show obvious beads of BR in PVA/SA nanofiber,which combine well with PVA/SA. After cross-linking with calcium chloride, the PVA/SA/BR nanofiber membrane changes from mesh to smooth membrane. When the mass fraction of berberine is 6%, the breaking strength of the PVA/SA/BR nanofiber membrane is 1.76 MPa, and the antibacterial rates for Escherichia coli and Staphylococcus aureus are 99.41% and 97.89% repspectively. When the mass fraction of calcium chloride is 4% and the cross-linking time is 4 h, the breaking strength of the PVA/SA/BR nanofiber membrane is 4.17 MPa and the liquid absorption rate is 1 257%.

Key words: medical dressing, berberine, calcium chloride cross-linking, antibacterial property, water resistance, nanofiber membrane

中图分类号: 

  • TQ340.64

图1

含不同质量分数BR的PVA/SA/BR纳米纤维膜表面形貌(×8 000)与直径分布图"

图2

BR、PVA/SA和PVA/SA/BR纳米纤维膜的红外光谱图"

图3

含不同质量分数BR的PVA/SA/BR纳米纤维膜的断裂强度和断裂伸长率"

图4

PVA/SA/BR纳米纤维膜对大肠杆菌和金黄色葡萄球菌的抑菌率"

图5

不同BR质量分数的PVA/SA/BR纳米纤维膜对大肠杆菌和金黄色葡萄球菌的抗菌效果图"

图6

不同质量分数氯化钙交联处理PVA/SA/BR的扫描电镜照片(×5 000)"

图7

不同质量分数氯化钙交联处理PVA/SA/BR纳米纤维膜的吸液倍率"

图8

不同交联时间下PVA/SA/BR纳米纤维膜的吸液倍率"

图9

不同交联时间下PVA/SA/BR的力学性能"

[1] 杜天乐, 刘东林, 景春晖, 等. 创伤敷料对促进创面愈合的研究进展[J]. 医学综述, 2015,21(6):969-971.
DU Tianle, LIU Donglin, JING Chunhui, et al. Research progress of wound dressing on promoting wound healing[J]. Medical Review, 2015,21(6):969-971.
[2] 陈桂钊, 蔡洁, 于晖. “三明治”结构聚乙烯醇/壳聚糖/海藻酸钠纳米纤维医用敷料[J]. 化纤与纺织技术, 2016,45(4):14-17.
CHEN Guizhao, CAI Jie, YU Hui. "Sandwich" structure polyvinyl alcohol/chitosan/sodium alginate nanofiber medical dressing[J]. Chemical Fiber and Textile Technology, 2016,45(4):14-17.
[3] 陈诚, 亓发芝. 功能性敷料的研究进展[J]. 中国美容医学, 2018,27(2):22-24.
CHEN Cheng, QI Fazhi. Research progress of functional dressing[J]. Chinese Journal of Aesthetic Medicine, 2018,27(2):22-24.
[4] 柯加法, 朱宏阳, 王金海. 医用功能性敷料的研究进展[J]. 海峡预防医学杂志, 2019,25(3):20-23.
KE Jiafa, ZHU Hongyang, WANG Jinhai. Research progress of medical functional dressings[J]. Strait Journal of Preventive Medicine, 2019,25(3):20-23.
[5] 杜雨, 王林, 王维海, 等. 静电纺丝制备纳米海藻酸钠/魔芋葡甘聚糖-菊糖纤维膜[J]. 复合材料学报, 2018,35(9):2528-2534.
DU Yu, WANG Lin, WANG Weihai, et al. Preparation of nanometer sodium alginate/konjac glucomannan-inulin fiber membrane by electrospinning[J]. Acta Materiae Compositae Sinica, 2018,35(9):2528-2534.
[6] 张小林, 王兰兰, 翁林, 等. 海藻酸盐医用材料的制备技术及应用现状[J]. 棉纺织技术, 2019,47(4):75-80.
ZHANG Xiaolin, WANG Lanlan, WENG Lin, et al. Preparation technology and application status of alginate medical materials[J]. Cotton Textile Technology, 2019,47(4):75-80.
[7] 石松松, 张磊, 张兵, 等. 藻酸衍生物在生物医药领域的研究进展[J]. 中国海洋药物, 2019,38(1):67-73.
SHI Songsong, ZHANG Lei, ZHANG Bing, et al. Research progress of alginic acid derivatives in the field of biomedicine[J]. China Marine Pharmaceuticals, 2019,38(1):67-73.
[8] 杨芬玲. 单宁共混高分子抗菌材料[D]. 上海:复旦大学, 2010: 13-15.
YANG Fenling. Tannin blend polymer antibacterial material[D]. Shanghai:Fudan University, 2010: 13-15.
[9] 王春红, 李洪昌, 王利军. 海藻酸钠/聚乙烯醇纳米纤维的制备与表征[J]. 化工新型材料, 2016,44(7):182-184.
WANG Chunhong, LI Hongchang, WANG Lijun. Preparation and characterization of sodium alginate/polyvinyl alcohol nanofibers[J]. New Chemical Materials, 2016,44(7):182-184.
[10] 雷红娜, 王迎, 李金环. 聚乙烯醇/海藻酸钠共混液的静电纺丝[J]. 上海纺织科技, 2018,46(2):22-24.
LEI Hongna, WANG Ying, LI Jinhuan. Electrostatic spinning of polyvinyl alcohol/sodium alginate blend liquid[J]. Shanghai Textile Science and Technology, 2018,46(2):22-24.
[11] COVELO A, GÓMEZ K K, CORONA-LIRA P, et al. Electrochemical characterization of PVA/SA nanofibers obtained by electrospinning processing[J]. Surface and Interface Analysis, 2018,50(11):1012-1017.
doi: 10.1002/sia.v50.11
[12] SHALUMON K T, ANULEKHA K H, NAIR S V, et al. Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings[J]. International Journal of Biological Macromolecules, 2011,49(3):247-254.
doi: 10.1016/j.ijbiomac.2011.04.005
[13] 徐海涛, 陈锦涛, 韦加娜. 静电纺丝制备载银海藻酸钠/聚乙烯醇复合纳米纤维膜敷料及其性能研究[J]. 广东化工, 2018,45(1):47-49.
XU Haitao, CHEN Jintao, WEI Jiana. Preparation of silver-loaded sodium alginate/polyvinyl alcohol composite nanofiber membrane dressing by electrospinning and its properties[J]. Guangdong Chemical Industry, 2018,45(1):47-49.
[14] LI W, LI X Y, CHEN Y, et al. Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition[J]. Carbohydrate Polymers, 2013,92(2):2232-2238.
doi: 10.1016/j.carbpol.2012.12.004
[15] 刘华钢, 申庆荣, 刘丽敏. 中药抗菌研究进展[J]. 时珍国医国药, 2010,21(2):463-465.
LIU Huagang, SHEN Qingrong, LIU Limin. Progress in antibacterial research of traditional Chinese medicine[J]. Shizhen Traditional Chinese Medicine and Materia Medica, 2010,21(2):463-465.
[16] 邢娟, 何梦静. 黄连素的临床应用[J]. 世界最新医学信息文摘, 2019,19(72):231-232.
XING Juan, HE Mengjing. Clinical application of berberine[J]. The World's Latest Medical Information Digest, 2019,19(72):231-232.
[17] 杨昕, 刘志民, 杨宏杰. 盐酸小檗碱片联合二甲双胍治疗初发2型糖尿病的临床研究[J]. 上海中医药杂志, 2020,54(3):59-62.
YANG Xin, LIU Zhimin, YANG Hongjie. Clinical study of berberine hydrochloride tablets combined with metformin in the treatment of initial type 2 diabetes[J]. Shanghai Journal of Traditional Chinese Medicine, 2020,54(3):59-62.
[18] 李春来, 蔡卫家, 程晓英. 复方黄连素片的红外鉴别[J]. 世界最新医学信息文摘, 2016,16(11):297-297.
LI Chunlai, CAI Weijia, CHENG Xiaoying. Infrared ide.pngication of compound berberine tablets[J]. The World's Latest Medical Information Digest, 2016,16(11):297-297.
[19] 刘东, 赵孔银, 宋欢语, 等. 硅酸钙-海藻酸钙复合水凝胶膜的制备及表征[J]. 复合材料学报, 2017,34(11):2401-2406.
LIU Dong, ZHAO Kongyin, SONG Huanyu, et al. Preparation and characterization of calcium silicate-calcium alginate composite hydrogel membrane[J]. Acta Materiae Compositae Sinica, 2017,34(11):2401-2406.
[20] 徐梦洁, 张秀梅, 胡银春, 等. 双交联聚乙烯醇/海藻酸钠水凝胶的制备与表征[J]. 高分子材料科学与工程, 2020,36(4):55-60,66.
XU Mengjie, ZHANG Xiumei, HU Yinchun, et al. Preparation and characterization of double crosslinked polyvinyl alcohol/sodium alginate hydrogel[J]. Polymer Materials Science and Engineering, 2020,36(4):55-60,66.
[21] 王倩倩, 张林, 张刚强, 等. Ca~(2+)交联半互穿网络对海藻酸钠/羟丙基甲基纤维素共混膜机械性能的影响[J]. 纤维素科学与技术, 2019,27(3):15-22.
WANG Qianqian, ZHANG Lin, ZHANG Gangqiang, et al. Effect of Ca~(2+) cross-linked semi-interpenetrating network on mechanical properties of sodium alginate/hydroxypropyl methyl cellulose blended membranes[J]. Cellulose Science and Technology, 2019,27(3):15-22.
[22] 孙复钱, 胡银, 王小玉, 等. 聚乙烯醇/海藻酸钠复合纳米纤维膜的制备和交联改性[J]. 材料导报, 2016,30(4):37-40.
SUN Fuqian, HU Yin, WANG Xiaoyu, et al. Preparation and cross-linking modification of polyvinyl alcohol/sodium alginate composite nanofiber membranes[J]. Materials Reports, 2016,30(4):37-40.
[23] 刘云, 冀虎, 赵瑾朝, 等. 氧化海藻酸钠交联海藻酸钙/明胶(半)互穿网络的制备及性能[J]. 高分子材料科学与工程, 2014,30(12):123-127.
LIU Yun, JI Hu, ZHAO Jinchao, et al. Preparation and properties of oxidized sodium alginate cross-linked calcium alginate/gelatin (semi) interpenetrating network[J]. Polymer Materials Science and Engineering, 2014,30(12):123-127.
[1] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[2] 王春红, 杨璐, 胡敏, 王晓云, 王利剑. 乌拉草提取液中木犀草素含量的测定及其抗菌性能[J]. 纺织学报, 2021, 42(04): 114-120.
[3] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[4] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[5] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[6] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[7] 黎俊妤, 蒋培清, 张文奇, 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[8] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[9] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[10] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[11] 韩佳蕊, 黄珍珍, 王佳珺, 殷淏, 高晶, 劳继红, 王璐. 医用敷料用柔性金属电极的制备及其细胞毒性分析[J]. 纺织学报, 2020, 41(09): 174-182.
[12] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[13] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[14] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[15] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!