纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 161-168.doi: 10.13475/j.fzxb.20200700808

• 机械与器材 • 上一篇    下一篇

基于纬编针织物特性的静电吸附力模型

刘立东1,2, 李新荣1,2(), 刘汉邦1,2, 李丹丹1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2020-07-03 修回日期:2020-11-23 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 李新荣
  • 作者简介:刘立东(1995—),男,硕士生。主要研究方向为服装设备智能化。
  • 基金资助:
    国家重点研发计划资助项目(2018YFB1308801)

Electrostatic adsorption model based on characteristics of weft knitted fabrics

LIU Lidong1,2, LI Xinrong1,2(), LIU Hanbang1,2, LI Dandan1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2020-07-03 Revised:2020-11-23 Online:2021-03-15 Published:2021-03-17
  • Contact: LI Xinrong

摘要:

为提高工业机器人在纺织服装行业的使用率,拓展静电吸附式末端执行器的使用范围,提升服装加工过程中面料自动抓取和转移自动化程度, 以纬编针织物为例,首先分析纬编针织物的结构特性和纤维成分对静电吸附力大小的影响,分别建立了织物单元的三维结构仿真模型和织物相对介电常数的计算模型。在此基础上构建纬编针织物的静电吸附力模型;然后通过仿真软件对模型进行验证。结果表明,利用该模型可计算出静电极板对纬编针织物的吸附力大小。该研究结果为实现面料的自动抓取和转移提供了新的思路。

关键词: 服装加工, 静电吸附力, 织物建模, 纬编针织物, 面料抓取, 机械手, 工业机器人

Abstract:

In order to improve the utilization rate of industrial robots in textile and garment industry, and to expand the application range of electrostatic adsorption end-effector, this research worked to solve the problem in automatic fabric grasping and transferring during garment processing, taking weft knitted fabrics as example. Through analyzing the structural characteristics of weft knitted fabrics, the influence of fiber composition on the adsorption capacity, the three-dimensional structure simulation model of fabric element and the calculation model of fabric relative dielectric constant were established respectively, on the basis of which the electrostatic adsorption model of weft knitted fabrics was built. The adsorption force model was verified by simulation software. The results show that the model can calculate the adsorption capacity of electrostatic plate to weft knitted fabric. This research provides a new idea for realizing automatic grasping and transferring of cloth.

Key words: garment processing, electrostatic adsorption, fabric modeling, weft knitted fabric, cloth graping, manipulator, industrial robot

中图分类号: 

  • TS183.92

图1

纬编针织物的结构简图"

图2

纬编针织物线圈的几何模型"

图3

BC段型值点坐标"

图4

纬编针织物的三维模型"

图5

不同体积分数的纬编针织物结构"

表1

等效介电常数随混纺织物中一种纤维体积分数的变化"

实验序号 不同纤维体积分数下的等效介电常数
10% 30% 50% 70% 90%
1 4.444 3.430 2.519 1.797 1.211
2 4.440 3.423 2.516 1.794 1.217
3 4.463 3.454 2.532 1.781 1.206
4 4.450 3.440 2.551 1.795 1.217
5 4.445 3.407 2.523 1.772 1.215
6 4.456 3.437 2.524 1.782 1.209
7 4.455 3.425 2.518 1.770 1.213
8 4.457 3.439 2.517 1.757 1.216
9 4.468 3.434 2.538 1.807 1.218
10 4.452 3.436 2.534 1.773 1.208
平均值 4.453 3.432 5 2.527 2 1.784 8 1.213
最大偏差/% 0.34 0.74 0.44 0.72 0.33

图6

静电吸附模型"

图7

平行板电容器场强分布"

图8

ΔE大小随h'的变化"

图9

纬编针织物的简化单元"

表2

几何参数配置表"

圈距
w/mm
纱线直径
d/mm
椭圆扁
系数α
起伏角
β/(°)
圈柱高度
h/mm
0.7 0.11 0.6 π/3 0.9

图10

纬编针织物的单元网格划分与静电吸附力仿真模型"

图11

静电吸附力曲线"

[1] 田苗, 李俊. 智能服装的设计模式与发展趋势[J]. 纺织学报, 2014,35(2):109-115.
TIAN Miao, LI Jun. Design mode and development trend of intelligent clothing[J]. Journal of Textile Research, 2014,35(2):109-115.
[2] KOUSTOUMPARDIS N. A 3-finger robotic gripper for grasping fabrics based on cams-followers mechanism[C] // SMYRNIS S, ASPRAGATHOS N A. Advances in Service and Industrial Robotics. Italy: Springer Cham, 2017: 612-620.
[3] SUN B. A new electrostatic gripper for flexible handling of fabrics in automated garment manufacturing[C] // ZHANG X Y. 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver: IEEE Computer Society, 2019: 879-884.
[4] CUBRIC G, SALOPEK C I. Study of grippers in automatic handling of nonwoven material[J]. Journal of The Institution of Engineers (India): Series E, 2019,100(2):167-173.
[5] 瞿锦程. 一种布料抓取装置:209009611U[P]. 2019-06-21.
QU Jincheng. A fabric grabbing device: 209009611U[P]. 2019-06-21.
[6] SOGARD M R, MIKKELSON A R. Analysis of coulomb and johnsen-rahbek electrostatic chuck performance in the presence of particles for extreme ultraviolet lithography[J]. Journal of Micro-nanolithography Mems and Moems, 2009,8(4):2334-2343.
[7] SCHALER E W. An electrostatic gripper for flexible objects[C] // RUFFATTO D, GLICK P, WHITE V, et al. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. [S.l.]: Institute of Electrical and Electronics Engineers Inc, 2017: 1172-1179.
[8] DHELIKA R, HEMTHAVY P, TAKAHASHI K, et al. Compliant bipolar electrostatic gripper with micropillar electrodes array for manipulation at macroscale[J]. Smart Materials and Structures, 2016,25(5):055037.
[9] PEIRCE FT. The geometry of cloth structure[J]. Journal of The Textile Institute: Transactions, 1937,28(3):45-96.
[10] CHOI K F, LO T Y. An energy model of plain knitted fabric[J]. Textile Research Journal, 2003,73(8):739-748.
doi: 10.1177/004051750307300813
[11] 吴周镜, 宋晖, 李柏岩, 等. 纬编针织物在计算机中的三维仿真[J]. 东华大学学报(自然科学版), 2011,37(2):210-214.
WU Zhoujing, SONG Hui, LI Baiyan, et al. Three-dimensional simulation of weft knitted fabrics in computer[J]. Journal of Donghua University (Natural Science), 2011,37(2):210-214.
[12] 杨青, 范秀娟. 基于NURBS曲面的纱线外观仿真[J]. 纺织学报, 2011,32(7):142-145.
YANG Qing, FAN Xiujuan. Yarn appearance simulation based on NURBS surface[J]. Journal of Textile Research, 2011,32(7):142-145.
[13] DE BOOR C. On calculation with B-splines[J]. Journal of Approximation Theory, 1972(6):50-62.
[14] COX M G. The numerical evaluation of B-splines[J]. IMA Journal of Applied Mathematics, 1972,10:134-149.
[15] 程式. 电场·磁场·电磁关系[M] // 电工原理: 第2部. 北京:龙门书局, 1952: 26-31.
CHENG Shi. Electric field ·magnetic field ·electromagnetic relations [M] // Electrical Principles: Part 2. Beijing: Longmen Publishing House, 1952: 26-31.
[16] 刘子玉. 关於国际单位制(SI)中真空介电常数的商榷[J]. 西安交通大学学报, 1980(2):141-145.
LIU Ziyu. Discussion on vacuum dielectric constant in international system of units (SI)[J]. Journal of Xi'an Jiaotong University, 1980(2):141-145.
[17] 曲宝龙, 王丽芳. 两相复合材料等效介电常数数值计算[J]. 功能材料, 2016,47(1):177-181.
QU Baolong, WANG Lifang. Numerical calculation of equivalent dielectric constant of two-phase composite materials[J]. Functional Materials, 2016,47(1):177-181.
[18] 于伟东. 纺织材料学[M].2版. 北京: 中国纺织出版社, 2018: 15-21.
YU Weidong. Textile materials science[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2018: 15-21.
[19] 汝欣, 彭来湖, 吕明来, 等. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018,39(9):44-49.
RU Xin, PENG Laihu, LÜ Minglai, et al. Geometric modeling and algorithm of weft knitted fabrics[J]. Journal of Textile Research, 2018,39(9):44-49.
[1] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[2] 刘立东, 李新荣, 刘汉邦, 李丹丹. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(02): 185-192.
[3] 刘汉邦, 李新荣, 刘立东. 服装面料自动抓取转移方法的研究进展[J]. 纺织学报, 2021, 42(01): 190-196.
[4] 韩晓雪, 缪旭红. 氨纶纬编导电针织物纵向电力学性能[J]. 纺织学报, 2019, 40(04): 60-65.
[5] 汝欣 彭来湖 吕明来 史伟民 胡旭东. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018, 39(09): 44-49.
[6] 邓逸飞 邓中民 柯薇. 应用线圈模型的羊毛衫组织搭配与变形模拟[J]. 纺织学报, 2018, 39(04): 151-157.
[7] 张蕾 韦攀东 李鹏飞 王晓华 刘秀平. 采用神经网络算法的多指机械手织物抓取规划[J]. 纺织学报, 2017, 38(01): 132-139.
[8] 吕唐军 龙海如. 纬编针织物结构识别中的图像变形修正[J]. 纺织学报, 2016, 37(3): 150-155.
[9] 沙莎 蒋高明. 纬编针织物三维模拟技术的研究现状与发展趋势[J]. 纺织学报, 2016, 37(11): 166-172.
[10] 史晶晶 陈伟雄 易洪雷 薛元 杨恩龙. 双色段彩纱针织物图案的形成机制[J]. 纺织学报, 2015, 36(09): 34-37.
[11] 陈莉 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(04): 50-54.
[12] 瞿畅;王君泽;李波. 纬编针织物基本组织的计算机三维模拟[J]. 纺织学报, 2009, 30(11): 136-140.
[13] 陈莉;宋广礼. 一种新的静态测试线圈长度的方法[J]. 纺织学报, 2006, 27(1): 9-11.
[14] 胡觉亮;季晓芬;韩曙光. 服装加工选址决策模型的扩展[J]. 纺织学报, 2004, 25(03): 64-65.
[15] 胡觉亮;季晓芬;韩曙光. 服装加工选址决策模型[J]. 纺织学报, 2004, 25(02): 62-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!