纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 197-206.doi: 10.13475/j.fzxb.20200702710

• 综合述评 • 上一篇    下一篇

面向织物疵点检测的图像处理技术研究进展

吕文涛1, 林琪琪1, 钟佳莹1, 王成群1, 徐伟强2()   

  1. 1.浙江理工大学 信息学院, 浙江 杭州 310018
    2.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2020-07-10 修回日期:2021-07-11 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 徐伟强
  • 作者简介:吕文涛(1982—),男,副教授,博士。主要研究方向为图像处理与机器学习。
  • 基金资助:
    国家自然科学基金项目(U1709219);国家自然科学基金项目(61601410);浙江省重点研发计划项目(2021C01047);东北大学流程工业综合自动化国家重点实验室联合基金项目(2021-KF-21-03);东北大学流程工业综合自动化国家重点实验室联合基金项目(2021-KF-21-06)

Research progress of image processing technology for fabric defect detection

LÜ Wentao1, LIN Qiqi1, ZHONG Jiaying1, WANG Chengqun1, XU Weiqiang2()   

  1. 1. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-07-10 Revised:2021-07-11 Published:2021-11-15 Online:2021-11-29
  • Contact: XU Weiqiang

摘要:

随着对纺织工业产品质量要求的提高以及传统疵点检测方法存在局限性,基于图像处理技术的织物疵点自动检测技术得到了快速的发展。为提高图像处理技术的应用效率,实现纺织行业的数字化与智能制造,介绍了织物图像的预处理技术,对织物疵点检测的主流方法进行了总结,包括基于结构、统计、频谱、模型和学习的方法,并对这些方法的检测原理做了概括,分析了其优缺点与适用范围;介绍了现有成品检测设备,对比分析了仪器和系统处理技术的优缺点;最后,梳理分析了现有的图像处理技术在纺织工业应用中所面临的难题,并提出了对未来发展的构想。

关键词: 数字图像处理, 疵点检测, 织物疵点, 图像预处理, 机器视觉

Abstract:

With the enhancement of product quality requirements in the textile industry and the limitations of traditional defect detection methods, the automatic detection of fabric defects based on image processing technology has seen an rapidly development. Compared with traditional technology, the application of image processing technology improves the processing efficiency and realizes the digitization and intelligent manufacturing of the textile industry. This paper introduces the preprocessing technology of fabric images, and summarizes the mainstream methods of fabric defect detection, including structure-based methods, statistics-based methods, spectrum-based methods, model-based methods and learning-based methods. In addition, it reviews the principles of these methods, and examines their advantages and disadvantages and scope of applications. Besides, the paper introduces the existing finished equipment and compares the advantages and disadvantages of these equipment. Difficulties facing the existing image processing technology in the application of the textile industry are analyzed, and prospects of future development are discussed.

Key words: digital image processing, defect detection, fabric defect, image preprocessing, machine vision

中图分类号: 

  • TP181
[1] 贺智明, 彭亚楠. 基于深度学习的织物疵点检测研究进展[J]. 毛纺科技, 2019, 47(8):83-88.
HE Zhiming, PENG Ya'nan. Progress in fabric defect detection based on deep learning[J]. Wool Textile Journal, 2019, 47(8):83-88.
[2] HENRY Y, GRANTHAM K P, NELSON H Y. Automated fabric defect detection: a review[J]. Image and Vision Computing, 2011, 29(7):442-458.
doi: 10.1016/j.imavis.2011.02.002
[3] 王孟涛, 李岳阳, 杜帅. 基于机器视觉的疵点检测方法的研究进展[J]. 现代纺织技术, 2019, 27(5):57-61.
WANG Mengtao, LI Yueyang, DU Shuai. Research progress of defect detection method based on machine vision[J]. Advanced Textile Technology, 2019, 27(5):57-61.
[4] 张素贞, 叶建隆, 邹采荣. 织物图像增强技术的研究[J]. 电子器件, 2011, 34(4):473-476.
ZHANG Suzhen, YE Jianlong, ZOU Cairong. Research on textile image enhancement technique[J]. Chinese Journal of Electron Devices, 2011, 34(4):473-476.
[5] SUN Y, LONG H. Detection of weft knitting fabric defects based on windowed texture information and threshold segmentation by CNN [C]//2009 International conference on Digital Image Processing. Bangkok:IEEE, 2009:292-296.
[6] 梁金祥, 姚桂国, 钟晓勇, 等. 织物疵点图像的直方图处理与增强[J]. 丝绸, 2009(5):35-37.
LIANG Jinxiang, YAO Guiguo, ZHONG Xiaoyong, et al. Enhancement and histogram processing for fabric defect image[J]. Journal of Silk, 2009(5):35-37.
[7] CHENG L, ZHAO L Y, CHEN L, et al. Digital image processing of cotton yarn seriplane [C]// 2010 International Conference on Computer and Information Application. Tianjin:IEEE, 2010:274-277.
[8] GUAN M, ZHONG Z Z, RUI Y N. Automatic defect segmentation for plain woven fabric images [C]//2019 International Conference on Communications, Information System and Computer Engineering (CISCE). Haikou: CISCE, 2019: 465-468.
[9] 杨彬蔚, 陆系群, 陈纯. 一种纺织印染图案的多尺度彩色分割算法[J]. 浙江大学学报(工学版), 2005, 39(4):530-534.
YANG Binwei, LU Xiqun, CHEN Chun. Multiscale color segmentation algorithm for textile images[J]. Journal of Zhejiang University(Engineering Science Edition), 2005, 39(4):530-534.
[10] 诸葛振荣, 徐敏, 刘阳飞. 基于Meanshift 的织物图像分割算法[J]. 纺织学报, 2007, 28(10):108-111.
ZHUGE Zhenrong, XU Min, LIU Yangfei. Fabric image segmentation algorithm based on Meanshift[J]. Journal of Textile Research, 2007, 28(10):108-111.
[11] 李鹏飞, 张宏伟. 基于K-means聚类的纺织品印花图案区域分割[J]. 西安工程大学学报, 2008, 22(5):551-554.
LI Pengfei, ZHANG Hongwei. Research on segmenting color regions in textile printing image based on K-means clustering[J]. Journal of Xi'an Polytechnic University, 2008, 22(5):551-554.
[12] 景军锋, 孟泰, 李鹏飞. 基于模糊C均值聚类的纺织品印花图像分割[J]. 纺织学报, 2012, 33(6):97-100.
JING Junfeng, MENG Tai, LI Pengfei. Textile print image segmentation based on FCM[J]. Journal of Textile Research, 2012, 33(6):97-100.
[13] JING J F, KANG X J, LI P F. Detection of the fabric printing quality based on the machine vision [C]//2010 International Conference on Intelligent Computation Technology and Automation.Changsha:IEEE, 2010:75-78.
[14] ZHANG R L, HU Y, GUO W J, et al. Multi-scale markov random field based fabric image segmentation associate with edge information [C]//2009 Second International Symposium on Computational Intelligence and Design.Changsha: ISCID, 2009:566-569.
[15] 余佶, 唐莉萍, 曾培峰. 基于区域清晰度的纺织纤维图像融合[J]. 计算机应用与软件, 2011, 28(10):245-249.
YU Ji, TANG Liping, ZENG Peifeng. Textile fibre image fusion based on regional clarity[J]. Computer Applications and Software, 2011, 28(10):245-249.
[16] 马侦. 数字图像的融合算法[J]. 电子技术与软件工程, 2018(6):62.
MA Zhen. Digital image fusion algorithm[J]. Electronic Technology & Software Engineering, 2018(6):62.
[17] 田宸玮, 王雪纯, 杨嘉能, 等. 织物瑕疵检测方法研究进展[J]. 计算机工程与应用, 2020, 56(12):8-18.
TIAN Chenwei, WANG Xuechun, YANG Jianeng, et al. Research progress on fabric defect detection methods[J]. Computer Engineering and Applications, 2020, 56(12):8-18.
[18] DIVYADEVI R, KUMAR B V. Survey of automated fabric inspection in textile industries [C]//2019 International Conference on Computer Communication and Informatics (ICCCI). Haikou:IEEE, 2019 :1-4.
[19] ABOUELELA A, ABBAS H M, ELSEEB H. Automated vision system for localizing structural defects in textilefabrics[J]. Pattern Recognition Letters, 2005, 26(10):1435-1443.
doi: 10.1016/j.patrec.2004.11.016
[20] 赵艳, 左保齐. 机器视觉在织物疵点检测上的应用研究综述[J]. 计算机工程与应用, 2020, 56(2):11-17.
ZHAO Yan, ZUO Baoqi. Analysis on application of machine vision in fabric defect defection[J]. Computer Engineering and Applications, 2020, 56(2):11-17.
[21] DING S M, LIU Z F, LI C L. AdaBoost learning for fabric defect detection based on HOG and SVM [C]//2011 International Conference on Multimedia Technology.Hangzhou: IEEE, 2011: 2903-2906.
[22] GAO G, ZHANG D, LI C, et al. A novel patterned fabric defect detection algorithm based on GHOG and low-rank recovery [C]//IEEE 13th International Conference Signal Process (ICSP).New York:IEEE, 2016: 1118-1123.
[23] LI C, GAO G, LIU Z, et al. Defect detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019, 7:83962-83973.
doi: 10.1109/Access.6287639
[24] ARNIA F, MUNADI K. Real time textile defect detection using GLCM in DCT-based compressed images [C]//2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).Istanbul: IEEE, 2015: 1-6.
[25] ZHU D, PAN R, GAO W, et al. Yarn-dyed fabric detection based on autocorrelation function and GLCM[J]. Autex Research Journal, 2015, 15:226-232.
doi: 10.1515/aut-2015-0001
[26] HAMDI A A, SAYED M S, FOUAD M M, et al. Fully automated approach for patterned fabric defect detection [C]//2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC).Cairo: IEEE, 2016: 48-51.
[27] GUSTIAN D A, ROHMAH N L, SHIDI K G F, et al. Classification of troso fabric using SVM-RBF multi-class method with GLCM and PCA feature extraction [C]//2019 International Seminar on Application for Technology of Information and Communication (iSemantic). Semarang: IEEE, 2019: 17-22.
[28] MAK K L, PENG P, YIU K F C. Fabric defect detection using morphological filters[J]. Image and Vision Computing, 2009. DOI: 10.1016/j.imavis.2009.03.007.
[29] REBHI A, ABID S, FNAIECH F. Fabric defect detection using local homogeneity and morphological image processing [C]//2016 International Image Processing, Applications and Systems (IPAS).Hammamet: IEEE, 2016: 1-5.
[30] GUAN S Q, SHI X H. Fabric defect detection based on wavelet decomposition with one resolution level [C]//2008 International Symposium on Information Science and Engineering. Shanghai: IEEE, 2008: 281-285.
[31] SAKHARE K, KULKARNI A, KUMBHAKARN M K N. Spectral and spatial domain approach for fabric defect detection and classification [C]//2015 International Conference on Industrial Instrumentation and Control (ICIC). Pune: IEEE, 2015: 640-644.
[32] PAN Z, HE N, JIAO Z. FFT used for fabric defect detection based on CUDA [C]//2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chongqing: IEEE, 2017: 2104-2107.
[33] ISMAIL N, SYAHRIR W M, ZAIN J M, et al. Fabric authenticity method using fast Fourier transformation detection [C]//International Conference on Electrical, Control and Computer Engineering 2011 (InECCE).Pahang: IEEE, 2011: 233-237.
[34] YANG X Z, PANG G K H, YUNG N H C. Fabric defect detection using adaptive wavelet[J]. Optical Engineering, 2001.DOI: 10.1117/1.1517290.
[35] LI Y D, DI X. Fabric defect detection using wavelet decomposition [C]//International Conference on Consumer Electronics.Las Vegas:IEEE 2013: 153-156.
[36] KARLEKAR V V, BIRADAR M S, BHANGALE K B. Fabric defect detection using wavelet filter [C]//2015 International Conference on Computing Communication Control and Automation. Pune: IEEE, 2015: 712-715.
[37] LI Y H, ZHOU X Y. Fabric defect detection with optimal gabor wavelet based on radon [C]//2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). Shenyang: IEEE, 2020: 788-793.
[38] 汤晓庆, 黄开兴, 秦元庆, 等. 基于Gabor滤波器和HOG特征的织物疵点检测[J]. 计算机测量与控制, 2018, 26(9):39-42, 47.
TANG Xiaoqing, HUANG Kaixing, QIN Yuanqing, et al. Fabric defect detection based on gabor filter and HOG feature[J]. Computer Measurement & Contro, 2018, 26(9):39-42, 47.
[39] KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[J]. IEEE Transactions on Industry Applications, 2002, 38, 425-440.
doi: 10.1109/28.993164
[40] AGILANDESWARI V, ANUJA J, GEORGE E D, et al. Fabric quality testing using image processing [C]// International Conference on Information Communication and Embedded Systems (ICICES2014). Chennai: IEEE, 2014: 1-4.
[41] 曹桂红, 欧阳颖, 国庆, 等. 基于SIFT算法的织物疵点检测[J]. 信息记录材料, 2019, 20(9):79-81.
CAO Guihong, OUYANG Ying, GUO Qing, et al. Fabric defect detection based on SIFT algorithm[J]. Information Recording Materials, 2019, 20(9):79-81.
[42] VADDIN J, SUBBARAMAN S. Modelling of plain weave fabric structure and its use in fabric defect identification [C]//Proceedings of 2014 European Modelling Symposium. Pisa: IEEE, 2014: 132-137.
[43] OZDEMIR S, ERCIL A. Markov random fields and Karhunen-Loeve transforms for defect inspection of textile products [C]//Proc of the IEEE Conference on Emerging Technologies and Factory Automation. Washington: IEEE, 1996: 697-703.
[44] 杨晓波. 基于GMRF模型的统计特征畸变织物疵点识别[J]. 纺织学报, 2013, 34(4):137-142.
YANG Xiaobo. Fabric defect detection of statistic aberration feature based on GMRF model[J]. Journal of Textile Research, 2013, 34(4):137-142.
[45] KUMAR A. Neural network based detection of local textile defects[J]. Pattern Recognition, 2003, 36(7):1645-1659.
doi: 10.1016/S0031-3203(03)00005-0
[46] JING J F, MA H, ZHANG H H. Automatic fabric defect detection using a deep convolutional neural network[J]. Coloration Technology, 2019.DOI: 135. 10.1111/cote.12394.
[47] OUYANG W, XU B, HOU J, et al. Fabric defect detection using activation layer embedded convolutional neural network[J]. IEEE Access, 2019, 7:70130-70140.
doi: 10.1109/Access.6287639
[48] AN M, WANG S Y, ZHENG L M, et al. Fabric defect detection using deep learning: an improved faster r-approach [C]//2020 International Conference on Computer Vision, Image and Deep Learning. Chongqing: CVIDL, 2020: 319-324.
[49] 李明, 景军锋, 李鹏飞. 应用GAN和Faster R-CNN的色织物缺陷识别[J]. 西安工程大学学报, 2018, 32(6):663-669.
LI Ming, JING Junfeng, LI Pengfei. Yarn-dyed fabric defect detection based on GAN and Faster R-CNN[J]. Journal of Xi'an Polytechnic University, 2018, 32(6):663-669.
[50] ZHANG H, ZHANG L, LI P, et al. Yarn-dyed fabric defect detection with YOLOV2 based on deep convolution neural networks [C]//2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). Enshi:IEEE, 2018:170-174.
[51] 张丽瑶, 王志鹏, 徐功平. 基于SSD的织物瑕疵检测的研究[J]. 电子设计工程, 2020, 28(6):40-44.
ZHANG Liyao, WANG Zhipeng, XU Gongping. Research on fabric defect detection based on SSD[J]. Electronic Design Engineering, 2020, 28(6):40-44.
[52] ZHU Z W, HAN G J, JIA G Y, et al. Modified denseNet for automatic fabric defect detection with edge computing for minimizing latency[J]. IEEE Internet of Things Journal, 2020, 7(10):9623-9636.
doi: 10.1109/JIoT.6488907
[53] WANG Z, JING J F. Pixel-wise fabric defect detection by CNNs without labeled training data[J]. IEEE Access, 2020, 8:161317-161325.
doi: 10.1109/Access.6287639
[54] HUANG Y Q, JING J F, WANG Z. Fabric defect segmentation method based on deep learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70:1-15.
[55] ZHAO Y D, HAO K R, HE H B, et al. A visual long-short-term memory based integrated CNN model for fabric defect image classification[J]. Neurocomputing, 2019, 380:259-270.
doi: 10.1016/j.neucom.2019.10.067
[56] AQSA R, BUSHRA Z, AMINA R, et al. Fabric defect detection using computer vision techniques: a comprehensive review[J]. Mathematical Problems in Engineering, 2020.DOI: 10.1155/2020/8189403.
[57] 蔡鹏, 杨磊, 罗俊丽. 一种基于卷积神经网络模型融合的织物疵点检测方法[J]. 北京服装学院学报(自然科学版), 2020, 40(1):55-62.
CAI Peng, YANG Lei, LUO Junli. Fabric defect detection method based on fusion of convolutional neural network models[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2020, 40(1):55-62.
[58] 张继超. 织物疵点判别方法研究与实现[D]. 郑州:中原工学院, 2012: 10-14.
ZHANG Jichao. Study and design for fabric detect[D]. Zhengzhou: Zhongyuan University of Technology, 2012: 10-14.
[59] MEIER R, UHLMANN J, 郭腊梅. Uster Fabriscan织物品质自动检测系统[J]. 国际纺织导报, 1999(3):48-51.
MERER R, UHLMANN J, GUO Lamei. Uster fabriscan automatic quality inspection system for fabrics[J]. Melliand China, 1999(3):48-51.
[60] 刘荣清. 织物疵点自动检验系统的发展和展望[J]. 棉纺织技术, 2017, 45(10):13-15.
LIU Rongqing. Development and prospect of fabric defect automatic inspecting system[J]. Cotton Textile Technology, 2017, 45(10):13-15.
[61] 何志贵, 魏丽琼. I-TEX2000型织物自动检验系统[J]. 国外纺织技术, 2000(12):36-37, 15.
HE Zhigui, WEI Liqiong. I-TEX2000 fabric automatic inspection system[J]. Textile Technology Overseas, 2000(12):36-37, 15.
[62] 姚登辉. 基于机器视觉的织造疵点自动验布机研制[D]. 武汉:武汉纺织大学, 2016: 6-8.
YAO Denghui. Development of automatic weaving defect inspecting machine based on machine vision[D]. Wuhan:Wuhan Textile University, 2016: 6-8.
[63] 马昀, 仲岑然. 织物自动检验系统的发展与应用[J]. 江苏工程职业技术学院学报, 2004(1):17-19.
MA Yun, ZHONG Cenran. The development and application of automated fabric insepection system[J]. Journal of Jiangsu College of Engineering and Technology, 2004(1):17-19.
[64] 织物生产商的质量伙伴:USTER@ Fabric Inspection织物检测展示了顶尖的技术和质量管理专业能力[J]. 纺织导报, 2019(9):58.
The quality partner of fabric manufacturers:USTER@ Fabric Inspection demonstrates top technology and quality management expertise[J]. China Textile Leader, 2019(9):58.
[65] 李彪, 李永红, 吕志华. FS220型光电自动验布机的特点及应用[J]. 棉纺织技术, 2017, 45(7):33-36.
LI Biao, LI Yonghong, LÜ Zhihua. Performance and application of FS220 photoelectric auto cloth inspecting machine[J]. Cotton Textile Technology, 2017, 45(7):33-36.
[66] 马云扬. 基于机器视觉的布匹瑕疵检测系统软件设计[D]. 上海:东华大学, 2019: 2-36.
MA Yunyang. Software design of fabric defect detection system based on machine vision[D]. Shanghai:Donghua University, 2019: 2-36.
[1] 任维佳, 杜玉红, 左恒力, 袁汝旺. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204.
[2] 刘国维, 潘如如, 高卫东, 周建. 基于总变差的织物疵点分割方法[J]. 纺织学报, 2021, 42(11): 64-70.
[3] 吴柳波, 李新荣, 杜金丽. 基于轮廓提取的缝纫机器人运动轨迹规划研究进展[J]. 纺织学报, 2021, 42(04): 191-200.
[4] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[5] 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121.
[6] 冯文倩, 李新荣, 杨帅. 人体轮廓机器视觉检测算法的研究进展[J]. 纺织学报, 2021, 42(03): 190-196.
[7] 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66.
[8] 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163.
[9] 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44.
[10] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[11] 杨恩君, 廖义辉, 刘安东, 俞立. 基于低秩分解的织物疵点检测[J]. 纺织学报, 2020, 41(05): 72-78.
[12] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[13] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[14] 金守峰, 林强强, 马秋瑞, 张浩. 基于BP神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76.
[15] 景军锋, 张君扬, 张缓缓, 苏泽斌. 梯度空间下的丝饼表面缺陷检测[J]. 纺织学报, 2020, 41(02): 44-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .