纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 46-50.doi: 10.13475/j.fzxb.20200705505

所属专题: 医用纺织品

• 纤维材料 • 上一篇    下一篇

热粘结复合纤维人造血管支架的制备及其性能

郭凤云1,2(), 过子怡1,2, 高蕾1,2, 郑霖婧1,2   

  1. 1. 浙江理工大学 纺织科学与工程学院, 浙江 杭州 310018
    2. 浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2020-07-22 修回日期:2021-01-29 出版日期:2021-06-15 发布日期:2021-06-25
  • 作者简介:郭凤云(1990—),女,讲师,博士。主要研究方向为多尺度结构功能纤维。E-mail: guofy@zstu.edu.cn
  • 基金资助:
    国家自然科学基金青年项目(51803183);浙江理工大学先进纺织材料与制备技术教育部重点实验室优青项目(2019QN02)

Preparation and properties of thermal bonded fibrous artificial blood vessels

GUO Fengyun1,2(), GUO Ziyi1,2, GAO Lei1,2, ZHENG Linjing1,2   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Hangzhou, Zhejiang 310018, China
  • Received:2020-07-22 Revised:2021-01-29 Published:2021-06-15 Online:2021-06-25

摘要:

为制备力学性能优异、无细胞毒性和耐穿刺性的小口径人造血管,采用静电纺丝技术结合浸泡脱管法制备了聚己内酯/聚氨酯(PCL/PU)小口径人造血管支架。借助扫描电子显微镜和万能力学拉伸机等对人造血管的形貌结构和力学性能进行测试,同时研究了人造血管支架的孔隙率、细胞毒性和耐穿刺性。结果表明:通过改变接收转辊尺寸,溶去内层聚乙烯吡咯烷酮模板进行脱管,即可得到内径为2、3、5 mm的小口径人造血管支架;通过调控成分比例和热粘结微观结构,可使PCL/PU人造血管支架的力学强度较纯PU纤维膜提高7倍,且横向和纵向均具有优异的拉伸力学性能;PCL/PU人造血管支架的细胞活力为94%,孔隙率为72%,与商用膨体聚四氟乙烯管支架相比,该人造血管穿刺后液体不会流出。

关键词: 静电纺丝, 人造血管支架, 热粘结点, 力学增强, 耐穿刺性

Abstract:

In order to prepare small-diameter artificial blood vessels with excellent properties, polycaprolactone/polyurethane (PCL/PU) small-diameter artificial blood vessels were prepared by electrospinning technology combined with soaking and tubing-off method, aiming to achieve non-cytotoxicity, puncture resistance, certain porosity and excellent mechanical properties. By means of scanning electron microscope and universal mechanical tensile testing machine, the morphology and mechanical properties of the materials were characterized, and the porosity, cytotoxicity and puncture resistance of artificial blood vessels were studied. The results showed that by changing the size of the receiving roller and then dissolving the inner polyvinyl pyrrolidone, the small diameter artificial blood vessel with the inner diameters of 2, 3, and 5 mm can be obtained. By adjusting the composition ratio and thermal bonding microstructure, the mechanical strength of artificial blood vessels was improved to be 7 times higher compared to the pure PU, with excellent mechanical properties of transverse and longitudinal stretching. The cell viability and porosity of the artificial blood vessel were 94% and 72%, respectively, and the comparison with the commercial expanded polyterafluoroethylene scaffold showed non fluid leakage after puncture.

Key words: electrospinning, artificial blood vessel, thermal bonding point, mechanical enhancement, puncture resistance

中图分类号: 

  • TQ342.87

图1

人造血管支架制备示意图"

图2

纤维膜和人造血管的扫描电镜照片"

图3

纤维膜和人造血管支架的力学性能"

图4

人造血管支架穿刺实验"

图5

MTT法测试人造血管支架细胞毒性"

[1] HASAN A, MEMIC A, ANNABI N, et al. Electrospun scaffolds for tissue engineering of vascular grafts[J]. Acta Biomaterialia, 2014, 10(1):11-25.
doi: 10.1016/j.actbio.2013.08.022
[2] DEVILLE S, SAIZ E, NALLA R K, et al. Freezing as a path to build complex composites[J]. Science, 2006, 311:515-518.
doi: 10.1126/science.1120937
[3] WANG J, LIN L, CHENG Q, et al. A strong bio-inspired layered PNIPAM-clay nanocomposite hydr-ogel[J]. Angewandte Chemie International Edition, 2012, 51:4676-80.
doi: 10.1002/anie.201200267
[4] VAZ C M, VAN T S, BOUTEN C V, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J]. Acta Biomaterialia, 2005, 1:575-82.
doi: 10.1016/j.actbio.2005.06.006
[5] SENEL A H G, PERETS A, AYAZ H, et al. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering[J]. Biomaterials, 2014, 35:8540-52.
doi: 10.1016/j.biomaterials.2014.06.029
[6] GREINER A, WENDORFF J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition, 2007, 46:5670-703.
doi: 10.1002/(ISSN)1521-3773
[7] 刘泽堃, 李刚, 李毓陵, 等. 生物医用纺织人造血管的研究进展[J]. 纺织学报, 2017, 38 (7):155-163.
LIU Zekun, LI Gang, LI Yuling, et al. Research progress of biomedical textile artificial blood ves-sel[J]. Journal of Textile Research, 2017, 38 (7):155-163.
[8] AHMED F, DUTTA N K, ZANNETTINO A, et al. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications[J]. Biomacromolecules, 2014, 15:1276-87.
doi: 10.1021/bm401825c
[9] SILL T J, VON R H A. Electrospinning: applications in drug delivery and tissue engineering[J]. Biomaterials, 2008, 29:1989-2006.
doi: 10.1016/j.biomaterials.2008.01.011
[10] MASOUMI N, LARSON B L, ANNABI N, et al. Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold aniso-tropy[J]. Advanced Healthcare Materials, 2014, 3:929-39.
doi: 10.1002/adhm.201300505
[11] YAO Y, WANG J, CUI Y, et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization[J]. Acta Biomaterialia, 2014, 10:2739-2749.
doi: 10.1016/j.actbio.2014.02.042
[12] PICCIANI P H S, MEDEIROS E S, PAN Z, et al. Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers[J]. Macromolecular Materials and Engineering, 2010, 295:618-27.
doi: 10.1002/mame.v295:7
[13] AJALLOUEIAN F, LIM M L, LEMON G, et al. Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds[J]. Biomaterials, 2014, 35:5307-5315.
doi: 10.1016/j.biomaterials.2014.03.015
[14] GUO F, WANG N, HOU L, et al. Mechanical enhancement of bi-phasic electrospun nanofibrous films by optimizing composition and configuration[J]. Materials Chemistry & Physics, 2017, 193:220-226.
[15] LI Y, GUO F, HAO Y, et al. Helical nanofiber yarn enabling highly stretchable engineered microtissue[J]. Proceedings of the National Academy of Sciences, 2019, 116:9245-9250.
doi: 10.1073/pnas.1821617116
[16] MA L, YANG G, WANG N, et al. Trap effect of three-dimensional fibers network for high efficient cancer-cell capture[J]. Advanced Healthcare Materials, 2015, 4:838-843.
doi: 10.1002/adhm.201400650
[1] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[2] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[3] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[4] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[5] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[6] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[7] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[8] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[9] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[10] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[11] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[12] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[13] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[14] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[15] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!