纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 89-94.doi: 10.13475/j.fzxb.20200707906

• 纺织工程 • 上一篇    下一篇

基于图像处理的织物保形性检测

唐千惠, 王蕾(), 高卫东   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2020-07-30 修回日期:2020-12-07 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 王蕾
  • 作者简介:唐千惠(1997—),女,硕士生。主要研究方向为数字化纺织技术。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309200)

Detection of fabric shape retention based on image processing

TANG Qianhui, WANG Lei(), GAO Weidong   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2020-07-30 Revised:2020-12-07 Online:2021-03-15 Published:2021-03-17
  • Contact: WANG Lei

摘要:

为更加全面、准确地评价织物保形性,开发了能够模拟织物在日常使用中被压皱后展平的恢复过程动态检测系统。通过检测系统获取织物折痕回复的视频序列,利用程序提取出各时刻的单帧视频图像,然后依次对图像进行预处理、二值化处理与细化处理,最后提取出反映织物保形性的指标,包括顶角、顶高、保形面积。实验结果表明:在折痕回复阶段,随时间延长各指标变化速率逐渐降低,在压力为10 N,加压时间为10 s的条件下,试样在60 s后趋于平稳;60 s时的顶角与现有标准方法测得的折皱回复角存在线性函数关系,顶高、保形面积与标准方法测得的悬垂系数之间存在线性函数关系。该系统可以通过顶角、顶高、保形面积3项指标预测织物折皱回复角与悬垂系数,并能够精确描述织物保形性动态变化过程,可实现对织物保形性精确、全面的评价。

关键词: 织物保形性, 折皱回复性, 悬垂性, 图像处理, 动态测量, 视频序列

Abstract:

In order to evaluate the shape retention of a fabric comprehensively and accurately, a dynamic detection system was developed to simulate the recovery process of fabric flattening after being creased in daily uses. The video sequence of fabric crease recovery is obtained by the detection system, and the single frame video image at each time is extracted by the program, and then the image is preprocessed, binarized and refined in turn. The indexes reflecting the fabric shape retention, including angle, height and shape preserving area, are extracted. The experimental results show that in the crease recovery stage, the change rate of each index gradually decreases with time. Under the condition of pressure 10 N and pressure time 10 s, the sample tends to become stable after 60 s in recovery stage. A linear relationship exists between the angle at 60 s and the wrinkle recovery angle measured by the existing standard method, and relationships between the height, shape retention area and the drape coefficient are linear too. The results show that the system can predict the wrinkle recovery angle and drape coefficient of fabric through the three indexes of angle, height and shape retention area, and it can accurately describe the dynamic change process of fabric shape, and can be used to evaluate the fabric shapes accurately and comprehensively.

Key words: fabric shape retention, wrinkle recovery, drape, image processing, dynamic measurement, video sequence

中图分类号: 

  • TS101.9

图1

织物保形性检测装置 1—操控系统界面; 2—相机; 3—抬起装置;4— 加压装置; 5—试样台; 6—上罩盖。"

图2

单帧视频图像及二值化与细化后图像"

表1

试样规格参数"

编号 原料 组织 纱线线
密度/tex
经纬密/
(根·(10 cm)-1)
整理方式
经纱 纬纱 经向 纬向
1# 平纹 14.6 14.6 120 70 丝光潮交联
2# 涤纶 二上二下
左斜纹
7.4 19.7 780 420
3# 亚麻 凸条 14.8 19.7 660 322
4# 平纹 9.7 9.7 787 394
5# 平纹 9.7 9.7 669 354

图3

经向试样图像"

图4

保形性指标动态变化"

表2

折痕回复阶段第60 s时织物保形性测试结果"

编号 顶角/(°) 顶高/cm 保形面积/cm2
经向 纬向 经向 纬向 经向 纬向
1# 154.8 149.8 0.35 0.60 1.44 2.22
2# 157.8 155.0 0.68 0.79 2.50 3.47
3# 122.4 113.9 0.49 0.63 1.44 1.50
4# 125.4 120.8 0.54 0.75 1.57 2.24
5# 132.8 129.2 0.49 0.68 1.55 2.32

表3

参照AATCC 66—2014手动方法测量的织物折皱回复角平均值"

编号 折皱回复角/(°)
经向 纬向
1# 147.4 142.8
2# 143.1 144.7
3# 111.6 98.6
4# 92.8 71.9
5# 95.0 83.4

表4

参照GB/T 23329—2009手动方法测量的织物悬垂系数的平均值"

编号 悬垂系数/%
静态 动态
1# 48.62 58.30
2# 72.26 76.87
3# 50.17 53.54
4# 59.55 62.23
5# 53.54 58.98
[1] 宗亚宁, 张海霞. 纺织材料学[M]. 上海: 东华大学出版社, 2013: 334.
ZONG Yaning, ZHANG Haixia. Textile materials science [M]. Shanghai: Donghua University Press, 2013: 334.
[2] 王蕾, 刘建立, 潘如如, 等. 基于视频序列的织物折皱回复角动态测量[J]. 纺织学报, 2013,34(2):55-60.
WANG Lei, LIU Jianli, PAN Ruru, et al. Dynamic measurement of fabric wrinkle recovery angle based on video sequence[J]. Journal of Textile Research, 2013,34(2):55-60.
[3] RAJA Zaouali, SLASH Msahli, FAOUZI Sakli. Energy modelling of fabrics wrinkle recovery behaviour[J]. Journal of The Textile Institute, 2016,107(11):1-8.
doi: 10.1080/00405000.2014.999478
[4] 陈明, 周华, 杨兰君, 等. 织物三维悬垂形态测试指标与三维重建[J]. 纺织学报, 2008,29(9):51-55.
CHEN Ming, ZHOU Hua, YANG Lanjun, et al. Three-dimensional fabric drape morphology test indexes and three-dimensional reconstruction[J]. Journal of Textile Research, 2008,29(9):51-55.
[5] 张晓婷, 洪剑寒, 査神爱, 等. 基于三维扫描技术的毛织物悬垂性能测试方法[J]. 毛纺科技, 2015,43(10):58-61.
ZHANG Xiaoting, HONG Jianhan, CHA Shenai, et al. Wool fabric drape performance test method based on 3D scanning technology[J]. Wool Textile Journal, 2015,43(10):58-61.
[6] SUNDARESAN S, PASUPATHI S A, SASIKALA L, 等. 悬垂角测试仪[J]. 国际纺织导报, 2019,47(1):50-52.
SUNDARESAN S, PASUPATHI S A, SASIKALA L, et al. Drape angle tester[J]. Melliand China, 2019,47(1):50-52.
[7] 郑鹏程, 汪学骞, 陈翟. 双模型互证法在评判休闲西裤外观保持性中的运用[J]. 纺织学报, 2007,28(3):79-83,99.
ZHENG Pengcheng, WANG Xueqian, CHEN Zhai. Application of the double-model mutual authentication method in judging the retention of the appearance of casual trousers[J]. Journal of Textile Research, 2007,28(3):79-83,99.
[8] 赵超, 刘新金, 王广斌. 基于KES与PhabrOmeter测试系统的棉织物保形性对比[J]. 丝绸, 2017,54(12):26-31.
ZHAO Chao, LIU Xinjin, WANG Guangbin. Comparison of shape retention of cotton fabric based on KES and PhabrOmeter test system[J]. Journal of Silk, 2017,54(12):26-31.
[9] 李了了, 邓善熙, 丁兴号. 基于大津法的图像分块二值化算法[J]. 微计算机信息, 2005(14):76-77.
LI Liaoliao, DENG Shanxi, DING Xinghao. Image block binarization algorithm based on otsu method[J]. Microcomputer Information, 2005(14):76-77.
[10] 吕俊白. 一种有效的二值图像细化算法[J]. 计算机工程, 2003(18):147-148.
LÜ Junbai. An effective binary image thinning algorithm[J]. Computer Engineering, 2003(18):147-148.
[11] 郭斯羽, 孔亚广, 张煦芳. 基于Hough变换的角点检测算法[J]. 仪器仪表学报, 2008(11):2424-2429.
GUO Siyu, KONG Yaguang, ZHANG Xufang. Corner detection algorithm based on Hough transform[J]. Chinese Journal of Scientific Instrument, 2008(11):2424-2429.
[1] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[2] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[3] 胡霄睿, 孙丰鑫, 肖彩勤, 高卫东. 基于原位力学测试的织物折皱回复性表征[J]. 纺织学报, 2020, 41(10): 41-45.
[4] 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43.
[5] 魏艳红, 刘新金, 谢春萍, 苏旭中, 张钟唏. 聚酯长丝/棉复合纱斜纹织物的保形性及服用性能[J]. 纺织学报, 2019, 40(12): 39-44.
[6] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[7] 黄嘉俊, 柯薇, 王静, 邓中民. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019, 40(05): 163-169.
[8] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[9] 蔡逸超, 周晓, 宋明峰, 牟新刚. 应用多尺度多方向模板卷积的筒子纱缺陷检测[J]. 纺织学报, 2019, 40(04): 152-157.
[10] 巫莹柱 单颖法 黄伯熹 林广茂 梁家豪 张晓利. 聚对苯二甲酸丙二醇酯与聚对苯二甲酸丁二醇酯混纺纤维的智能识别[J]. 纺织学报, 2018, 39(09): 169-175.
[11] 陆奕辰 王蕾 唐千惠 潘如如 高卫东. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(08): 144-149.
[12] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[13] 刘成霞 周澳. 利用十字交叉法测试织物弯曲悬垂性[J]. 纺织学报, 2018, 39(06): 42-46.
[14] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[15] 王雯雯 刘基宏. 应用优化霍夫变换的细纱断头检测[J]. 纺织学报, 2018, 39(04): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!