纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 7-11.doi: 10.13475/j.fzxb.20200708006

• 纤维材料 • 上一篇    下一篇

含咪唑结构高强高模聚酰亚胺纤维的制备及其结构与性能

郑森森1,2, 郭涛3, 董杰1,2, 王士华3, 张清华1,2()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室,上海 201620
    3.江苏奥神新材料股份有限公司, 江苏 连云港 222000
  • 收稿日期:2020-07-30 修回日期:2020-11-03 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 张清华
  • 作者简介:郑森森(1993—),男,博士生。主要研究方向为高性能纤维及其复合材料。
  • 基金资助:
    国家自然科学基金项目(51903038);国家自然科学基金项目(21774019);国家自然科学基金项目(21975040)

Preparation, structure and properties of high-strength high-modulus polyimide fibers containing benzimidazole moiety

ZHENG Sensen1,2, GUO Tao3, DONG Jie1,2, WANG Shihua3, ZHANG Qinghua1,2()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Jiangsu Aoshen Hi-Tech Materials Co., Ltd., Lianyungang, Jiangsu 222000, China
  • Received:2020-07-30 Revised:2020-11-03 Online:2021-02-15 Published:2021-02-23
  • Contact: ZHANG Qinghua

摘要:

为增强聚酰亚胺纤维的力学性能,促进其在复合材料领域的应用,基于高性能聚合物纤维的结构设计,将杂环二胺单体5-氨基-2- (对氨基苯基)苯并咪唑引入到3,3',4,4'-联苯四羧酸二酐和对苯二胺的聚酰亚胺刚性骨架中得到纺丝溶液,通过干法纺丝技术制备得到聚酰亚胺纤维,研究了纤维化学结构和聚集态结构与纤维力学性能的关系,并系统评价了纤维的热性能和抗紫外光辐照性能。结果表明:聚酰亚胺纤维的拉伸强度和初始模量分别达到4.04、130 GPa,这得益于其聚合物分子链沿纤维轴向的高度取向性及分子链间形成的氢键作用;其玻璃化转变温度和热质量损失10%时温度分别为324、587 ℃,经168 h 紫外光辐照后,拉伸强度保持率为92%,具有良好的耐热性和优异的抗紫外光辐照性能。

关键词: 聚酰亚胺纤维, 干法纺丝, 聚集态结构, 抗紫外光辐照性能, 高强高模

Abstract:

In order to improve the mechanical properties of polyimide (PI) fibers and promote their applications for composites, the spinning dopes were synthesized by an aromatic heterocyclic diamine monomer of 2-(4-aminophenyl)-5-aminobenzimidazole (BIA) with rigid polyimide backbones of 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA) and p-phenylene diamine (p-PDA), which were based on a structural design of high-performance polymeric fibers. The PI fibers were prepared via dry-spinning the BPDA-PDA-BIA solution. The relationships between mechanical properties of the fibers and chemical construction and aggregation structure were studied. In addition, the thermal properties and ultraviolet (UV) irradiation resistance of the fibers were evaluated systematically. The results show that the PI fibers reach the optimum tensile strength and initial modulus of 4.04 and 130 GPa, respectively, mainly due to the high orientation of the polymer chains along the fiber direction and the intermolecular hydrogen bonding interactions. The glass-transition and 10%-weight-loss temperature of the PI-4 fiber are 324 and 587 ℃, and the fiber retains 92% of its tensile strength after 168 h of UV irradiation, indicating prominent UV irradiation resistance and excellent thermal stability.

Key words: polyimide fiber, dry spinning, aggregation structure, UV irradiation resistance, high-strength high-modulus

中图分类号: 

  • TB383

图1

PI-0和PI-4纤维的全反射红外光谱图"

图2

氮气气氛下PI-4纤维的热稳定性曲线"

图3

不同热牵伸倍数PI纤维的DMA曲线"

表1

不同热牵伸倍数的PI纤维的力学性能"

样品编号 拉伸强度/GPa 初始模量/GPa 断裂伸长率/%
PI-0 0.11±0.01 24±2 40.21±3.82
PI-1 1.40±0.09 60±6 1.89±0.19
PI-2 2.62±0.13 90±8 2.09±0.11
PI-3 3.51±0.11 112±9 2.67±0.28
PI-4 4.04±0.20 130±11 2.86±0.22

图4

PI-4、PBO和Kevlar?49纤维的力学性能保持率"

图5

不同热牵伸倍数的PI纤维的二维广角X射线衍射光谱图"

图6

不同热牵伸倍数PI 纤维的一维X射线衍射光谱图"

图7

PI 纤维在 2θ 为 9.4°处方位角的扫描曲线"

图8

不同热牵伸倍数PI 纤维的 fc变化曲线"

[1] ZHANG Q H, DAI M, DING M X, et al. Mechanical properties of BPDA-ODA polyimide fibers[J]. European Polymer Journal, 2004,40(11):2487-2493.
[2] LIAW D J, WANG K L, HUANG Y C, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012,37(7):907-974.
[3] AFSHARI M, SIKKEMA D J, LEE K, et al. High performance fibers based on rigid and flexible polymers[J]. Polymer Reviews, 2008,48(2):230-274.
[4] GAN F, DONG J, TANG M, et al. High-tenacity and high-modulus polyimide fibers containing benzimidazole and pyrimidine units[J]. Reactive and Functional Polymers, 2019,141:112-122.
[5] YANG C, DONG J, FANG Y, et al. Preparation of novel low-κ polyimide fibers with simultaneously excellent mechanical properties, UV-resistance and surface activity using chemically bonded hyperbranched polysiloxane[J]. Journal of Materials Chemistry C, 2018,6(5):1229-1238.
[6] DONG J, YIN C, ZHAO X, et al. High strength polyimide fibers with functionalized graphene[J]. Polymer, 2013,54(23):6415-6424.
[7] DONG J, FANG Y, GAN F, et al. Enhanced mechanical properties of polyimide composite fibers containing amino functionalized carbon nanotubes[J]. Composites Science and Technology, 2016,135:137-145.
[8] LIU M, DU Y, MIAO Y E, et al. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes[J]. Nanoscale, 2015,7(3):1037-1046.
pmid: 25474256
[9] NIU H, HUANG M, QI S, et al. High-performance copolyimide fibers containing quinazolinone moiety: preparation, structure and properties[J]. Polymer, 2013,54(6):1700-1708.
[10] GAN F, DONG J, ZHANG D, et al. High-performance polyimide fibers derived from wholly rigid-rod mono-mers[J]. Journal of Materials Science, 2017,53(7):5477-5489.
[11] 甘锋, 董杰, 张殿波, 等. 热处理过程中聚酰亚胺纤维结构与性能的演变[J]. 合成纤维工业, 2018,41(1):21-25.
GAN Feng, DONG Jie, ZHENG Dianbo, et al. Evolution of structure and properties of polyimide fibers during thermal treatment[J]. China Synthetic Fiber Industry, 2018,41(1):21-25.
[12] SHIN T J, LEE B, YOUN H S, et al. Time-resolved synchrotron X-ray diffraction and infrared spectroscopic studies of imidization and structural evolution in a microscaled film of PMDA-3,4'-ODA poly(amic acid)[J]. Langmuir, 2001,17(25):7842-7850.
[13] DONG J, YIN C Q, LIN J Y, et al. Evolution of the microstructure and morphology of polyimide fibers during heat-drawing process[J]. RSC Advances, 2014,4(84):44666-44673.
[14] WILCHINSKY Z W. Orientation in crystalline polymers related to deformation[J]. Polymer, 1964,5:271-281.
[15] YIN C, DONG J, TAN W, et al. Strain-induced crystallization of polyimide fibers containing 2-(4-aminophenyl)-5-aminobenzimidazole moiety[J]. Polymer, 2015,75:178-186.
[1] 董大林, 宾月珍, 蹇锡高. 基于干法纺丝的含二氮杂萘酮结构聚芳醚酮纤维制备及其性能[J]. 纺织学报, 2020, 41(12): 1-6.
[2] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[3] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
[4] 杜晓冬, 林芳兵, 蒋金华, 陈南梁, 刘燕平. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(09): 22-27.
[5] 林芳兵 蒋金华 陈南梁 杜晓冬 苏传丽. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(05): 14-19.
[6] 朱维维 肖红 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11): 177-184.
[7] 杨莉 张艳艳 杨稳 苏瑞. 服用聚酰亚胺纤维织物的热学性能[J]. 纺织学报, 2017, 38(08): 62-67.
[8] 余莹莹 邢铁玲 盛家镛 陈国强 刘雅光 田驰. 柞蚕彩丝的结构和性能[J]. 纺织学报, 2015, 36(04): 16-19.
[9] 王建铨 吴津田 刘鹏清 叶光斗 徐建军. 聚乙烯醇水溶纤维干法纺丝成形模拟[J]. 纺织学报, 2013, 34(2): 23-27.
[10] 尹朝清, 徐园, 张清华. 聚酰亚胺纤维及其阻燃特性[J]. 纺织学报, 2012, 33(6): 116-120.
[11] 李文涛, 姚淑焕, 彭淑萍, 吴萌, 张超波, 张再兴. 改性聚芳噁二唑纤维的热氧老化性能[J]. 纺织学报, 2012, 33(6): 151-154.
[12] 李书干 焦晓宁. 聚酰亚胺针刺布与聚苯硫醚针刺布的热稳定性与燃烧性能对比[J]. 纺织学报, 2012, 33(12): 35-39.
[13] 张小英. 土壤填埋降解后丝素纤维的微观结构和力学性能[J]. 纺织学报, 2008, 29(2): 7-10.
[14] 王成.;林红;路艳华;陈宇岳. 经纳米壳聚糖处理的桑蚕丝纤维聚集态结构[J]. 纺织学报, 2007, 28(9): 1-3.
[15] 谢瑞娟;李明忠.;朱美男;严明. 干燥温度对丝胶膜结构的影响[J]. 纺织学报, 2007, 28(7): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!