纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 102-109.doi: 10.13475/j.fzxb.20200800308

• 纺织工程 • 上一篇    下一篇

中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能

张陈恬1, 赵连英1, 顾学锋2   

  1. 1.浙江理工大学 纺织科学与工程学院, 浙江 杭州 310018
    2.宁波马菲羊纺织科技有限公司, 浙江 宁波 315700
  • 收稿日期:2020-08-03 修回日期:2020-10-26 出版日期:2021-03-15 发布日期:2021-03-17
  • 作者简介:张陈恬(1996—),女,硕士生。主要研究方向为新型纺织品开发。

Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric

ZHANG Chentian1, ZHAO Lianying1, GU Xuefeng2   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Ningbo Myfitt Textile Technology Co., Ltd., Ningbo, Zhejiang 315700, China
  • Received:2020-08-03 Revised:2020-10-26 Online:2021-03-15 Published:2021-03-17

摘要:

为研究中空咖啡碳聚酯纤维含量对其纬平针织物服用性能的影响,设计了5种不同混纺比中空咖啡碳聚酯纤维/棉纤维,采用环锭纺与赛络纺纺制了10组18.3 tex混纺纱,并织成相同规格的纬平针织物。测试并分析织物的顶破、起毛起球、透气、透湿及保暖性能。基于回归分析,获得了中空咖啡碳聚酯纤维含量与织物各性能指标的关系,并建立了综合性能评价函数对织物的服用性能进行评价。结果表明:随着中空咖啡碳聚酯纤维含量的增加,混纺纬平针织物的顶破强力、透气、透湿、保暖性增加,抗起毛起球性能变差,赛络纱织物的综合性能优于环锭纱织物;中空咖啡碳聚酯纤维/棉混纺织物相比于普通涤/棉织物,透气性能可提高66%,透湿性能提高10%,保暖性能提高2.6倍。

关键词: 中空咖啡碳聚酯纤维, 纤维含量, 针织物, 服用性能, 功能纺织品

Abstract:

In order to study the influence of hollow coffee carbon polyester content on the wearability of hollow coffee carbon polyester fabrics, five blending ratios of hollow coffee carbon polyester/cotton fiber were designed. Ten groups of yarns were made by ring spinning and Siro spinning, and weft plain knitted fabrics of the same specification were made. Fabric bursting, pilling, air permeability, moisture permeability and thermal performance were tested and analyzed. Based on regression analysis, the relationship between content of hollow coffee carbon polyester and fabric bursting, pilling, air permeability, moisture permeability and thermal insulation performance was obtained, and a comprehensive performance evaluation was established to make a comprehensive evaluation for fabric wearability. The results show that with the increase of hollow coffee carbon polyester content, the bursting strength, air permeability, moisture permeability and heat preservation performance of the fabric increases, and the pilling performance become worse, and the comprehensive value of the siro-yarn fabric was always higher than that of ring-yarn fabric. Compared with ordinary poly-cotton blended fabric, hollow coffee carbon polyester/cotton blended fabric has at least 66% higher permeability increased, also 10% higher moisture permeability and 2.6 times higher thermal performance.

Key words: hollow coffee carbon polyester, fiber content, knitted fabric, wearability, functional textiles

中图分类号: 

  • TS102.5

图1

中空咖啡碳聚酯纤维的横向和纵向形态"

表1

纤维参数"

纤维种类 线密度/dtex 长度/mm 断裂强度/(cN·dtex-1) 断裂伸长率/% 初始模量/(cN·dtex-1) 回潮率/%
中空咖啡碳聚酯纤维 1.67 38 5.12 20.9 37.51 1.54
细绒棉 1.86 30 2.71 10.3 20.10 5.30

表2

纱线性能"

纱线编号 中空咖啡碳聚酯纤维与棉混纺比 断裂强度/(cN·tex-1) 断裂伸长率/% 回潮率/% 条干不匀变异系数/% 毛羽指数H
a1 20/80 16.2 7.2 6.08 16.24 5.13
a2 40/60 17.0 8.1 5.51 14.89 4.33
a3 50/50 17.6 8.6 5.43 15.03 4.16
a4 60/40 18.8 9.3 5.37 15.49 3.88
a5 80/20 22.1 10.8 2.85 15.40 3.32
b1 20/80 16.7 6.5 7.89 15.45 4.27
b2 40/60 18.7 8.0 6.87 14.69 3.60
b3 50/50 19.1 8.8 6.76 14.78 3.51
b4 60/40 20.9 9.2 6.67 14.85 3.33
b5 80/20 24.9 10.7 3.08 14.96 3.12

表3

织物基本参数"

织物
编号
织物厚度/
mm
横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm)-1)
A1 0.130 68 78
A2 0.128 70 82
A3 0.130 69 80
A4 0.130 71 83
A5 0.131 70 81
B1 0.132 71 82
B2 0.130 69 81
B3 0.131 72 80
B4 0.129 70 80
B5 0.131 72 81

图2

顶破强力与中空咖啡碳聚酯纤维含量的拟合曲线"

图3

顶破长度与中空咖啡碳聚酯纤维含量的拟合曲线"

图4

起毛起球评级样照"

表4

织物起毛起球评级"

试样
编号
不同摩擦次数下的织物起毛起球评级 平均值
125次 500次 1 000次 2 000次 5 000次 7 000次
A1 5 4.5 4 4 3.5 3 4
A2 5 4.5 4 4 3.5 3 4
A3 5 4.5 4 4 3.5 3 4
A4 5 4.5 4 3.5 3 3 3.83
A5 5 4 4 3.5 3 2.5 3.67
B1 5 5 4.5 3.5 3.5 3.5 4.17
B2 5 5 4.5 4.5 4 4 4.5
B3 5 5 4.5 4.5 4 4 4.5
B4 5 4.5 4.5 4.5 4 4 4.42
B5 5 4.5 4.5 4 3.5 3 4.08

图5

不同摩擦次数下试样A1的表面起毛起球照片"

图6

起毛起球等级与中空咖啡碳聚酯纤维含量的拟合曲线"

图7

透气率与中空咖啡碳聚酯纤维含量的拟合曲线"

图8

透湿率与中空咖啡碳聚酯纤维含量的拟合曲线"

图9

克罗值与中空咖啡碳聚酯纤维含量的拟合曲线"

表5

试样性能综合评价值"

试样编号 综合评价值 试样编号 综合评价值
A1 0.207 B1 0.226
A2 0.217 B2 0.239
A3 0.221 B3 0.246
A4 0.225 B4 0.252
A5 0.232 B5 0.265
[1] 李玉华, 李春光, 贾文芹, 等. 涤棉织物的吸湿排汗抗菌整理[J]. 染整技术, 2018,40(1):30-32.
LI Yuhua, LI Chunguang, JIA Wenqin, et al. Antiseptic finishing of polyester cotton fabric with moisture absorption and sweat elimination[J]. Textile Dyeing and Finishing Journal, 2008,40(1):30-32.
[2] 宋艳辉. 绿色环保纤维的运用研究[J]. 山东纺织经济, 2010(1):56-58.
SONG Yanhui. Application of green environmental fiber[J]. Shandong Textile Economy, 2010(1):56-58.
[3] 咖啡碳纤维面世[J]. 毛纺科技, 2011,39(12):41.
Carbon fiber in coffee[J]. Wool Textile Journal, 2011,39(12):41.
[4] 唐士军. 国内涤纶中空纤维产品状况及发展趋势[J]. 聚酯工业, 2004(2):18-20.
TANG Shijun. Status and development trend of polyester hollow fiber products in China[J]. Polyester Industry, 2004(2):18-20.
[5] 张兵, 吕春祥, 刘耀东, 等. 凝固浴组成对聚丙烯腈基中空中孔纤维结构和性能的影响[J]. 新型炭材料, 2019,34(1):44-50.
ZHANG Bing, LÜ Chunxiang, LIU Yaodong, et al. Effect of solidification bath composition on the structure and properties of polyacrylonitrile based air porous fibers[J]. New Carbon Materials, 2019,34(1):44-50.
[6] 徐征奇, 柯俊安. 创新与环保:S.Caf~科技咖啡纱的研发与应用[C] //“力恒杯”第11届功能性纺织品、纳米技术应用及低碳纺织研讨会论文集.北京:北京纺织工程学会, 2011: 355-358.
XU Zhengqi, KE Jun'an. Innovation and environmental protection:S.Caf~research, development and application of science and technology coffee yarn[C] // Proceedings of the 11th Liheng Cup Symposium on Functional Textiles, Nanotechnology Applications and Low-carbon Textiles.Beijing: Beijing Textile Engineering Society, 2011: 355-358.
[7] 王虹. 德福伦:开创咖啡炭纤维产业链——访上海德福伦化纤有限公司技术中心副主任孔彩珍[J]. 中国纤检, 2013(19):38-39.
WANG Hong. De Fulun: creating the coffee carbon fiber industry chain—interview with kong caizhen, deputy director of technical center of Shanghai Defron Chemical Fiber Co., LTD.[J]. China Fiber Inspection, 2013(19):38-39.
[8] 井沁沁, 沈兰萍, 石煜. 咖啡炭纤维研究现状及展望[J]. 合成纤维, 2019,48(5):9-12.
JING Qinqin, SHEN Lanping, SHI Yu. Research status and prospect of coffee carbon fiber[J]. Synthetic Fiber in China, 2019,48(5):9-12.
[9] 张陈恬, 赵连英, 顾学锋, 等. 混纺比对中空咖啡碳/棉混纺纱性能的影响[J]. 丝绸, 2021,58(1):27-33.
ZHANG Chentian, ZHAO Lianying, GU Xuefeng, et al. Effect of blending ratio on the hollow coffee carbon/cotton blended yarn[J]. Journal of Silk, 2021,58(1):27-33.
[10] 肖琪, 王瑞, 孙红玉, 等. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020,41(2):172-178.
XIAO Qi, WANG Rui, SUN Hongyu, et al. Research progress of theoretical model of fabric pilling mech-anism[J]. Journal of Textile Research, 2020,41(2):172-178.
[11] WAN A L, YU W D. Effect of fiber morphology and dimensions on fuzzing and pilling of wool knitted fa- brics[C] //Proceedings of the 12th International Wool Research Conference. Beijing: China Textile & Apparel Press, 2010: 44-47.
[12] NAEEM F. Pilling performance improvements of fabrics made with bamboo rayon and bamboo rayon/cotton blends[J]. AATCC Journal of Research, 2018,5(6):8-16.
[13] LI L Y, ZHU M, WEI X. Pilling performance of cashmere knitted fabric of woollen ring yarn and mule yarn[J]. Fibres & Textiles in Eastern Europe, 2014,22(1):74-75.
[14] 李海燕. 涤棉机织物的起毛起球影响因素及调控研究[D]. 天津:天津工业大学, 2019: 11-12.
LI Haiyan. Study on influencing factors and regulation of pilling of polyester cotton woven fabrics[D]. Tianjin:Tiangong University, 2019: 11-12.
[15] GRUJICIC M, CHIYYAJALLU K M, et al. Effect of shear, compaction and nesting on permeability of the orthogonal plain-weave fabric preforms[J]. Materials Chemistry & Physics, 2004,86(2):358-369.
[16] HA M, TOKURA H, YANAI Y, et al. Combined effects of fabric air permeability and moisture absorption on clothing microclimate and subjective sensation during intermittent exercise at 27 degrees[J]. Ergonomics, 1999,42(7):964-979.
pmid: 10424185
[17] 徐宗桓, 李莉. 提高涤纶织物吸湿性的途径[J]. 广东化纤, 1994(4):38-41.
XU Zongheng, LI Li. Ways to improve moisture absorption of polyester fabric[J]. Guangdong Chemical Fiber, 1994(4):38-41.
[18] 张威, 刘智, 李龙. 基于多元回归分析的纬平织物热湿舒适性能[J]. 纺织学报, 2011,32(7):54-59.
ZHANG Wei, LIU Zhi, LI Long. Thermal and humidity comfort performance of weft flat fabric based on multiple regression analysis[J]. Journal of Textile Research, 2011,32(7):54-59.
[1] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[2] 吕常亮, 郝志远, 陈慧敏, 张慧乐, 岳晓丽. 基于均匀化理论的小变形纬编针织物线圈形态有限元分析[J]. 纺织学报, 2021, 42(03): 21-26.
[3] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[4] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[5] 刘立东, 李新荣, 刘汉邦, 李丹丹. 基于纬编针织物特性的静电吸附力模型[J]. 纺织学报, 2021, 42(03): 161-168.
[6] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
[7] 张滕家璐, 吴伟, 钟毅, 毛志平, 徐红. 平幅前处理对棉针织物染色性能的影响[J]. 纺织学报, 2021, 42(03): 9-13.
[8] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[9] 刘海桑, 蒋高明, 董智佳. 基于Web的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[10] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[11] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[12] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[13] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[14] 熊祥章, 裴泽光, 陈革. 基于形状记忆合金丝包覆纱的针织物致动器研究[J]. 纺织学报, 2020, 41(05): 50-57.
[15] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!