纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 174-179.doi: 10.13475/j.fzxb.20200801206

• 染整与化学品 • 上一篇    下一篇

用低温界面聚合法制备多功能核壳结构热电织物

张雪飞1, 李婷婷1,2, 许炳铨3, 林佳弘1,2,4,5, 楼静文1,3,6()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进复合材料教育部重点实验室,天津 300387
    3.闽江学院 海洋学院, 福建 福州 350108
    4.逢甲大学 纤维与复合材料学系, 台湾 40724
    5.中国医药大学 中医学系, 台湾 40402
    6.亚洲大学 生物信息与医学工程学系, 台湾 41354
  • 收稿日期:2020-08-03 修回日期:2020-11-11 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 楼静文
  • 作者简介:张雪飞(1992—),男,博士生。主要研究方向为热电纺织复合材料的结构及性能。
  • 基金资助:
    国家自然科学基金项目(51503145);国家自然科学基金项目(511702187);福建省自然科学基金项目(2018J01505);福建省自然科学基金项目(2018J01504)

Preparation of multifunctional core-shell structure thermoelectric fabrics by low-temperature interfacial polymerization

ZHANG Xuefei1, LI Tingting1,2, SHIU Bingchiuan3, LIN Jiahorng1,2,4,5, LOU Chingwen1,3,6()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. Ocean College, Minjiang University, Fuzhou, Fujian 350108, China
    4. Department of Chemistry and Materials, Feng Chia University, Taiwan 40724, China
    5. School of Chinese Medicine, China Medical University, Taiwan 40402, China
    6. Department of Bioinformatics and Medical Engineering, Asia University, Taiwan 41354, China
  • Received:2020-08-03 Revised:2020-11-11 Online:2021-02-15 Published:2021-02-23
  • Contact: LOU Chingwen

摘要:

为制备导电率高且柔性的多功能热电织物,采用低温原位聚合法制备了对甲苯磺酸离子掺杂聚(3,4-乙烯二氧噻吩)(PEDOT∶Tos)包覆聚丙烯纤维的核壳结构热电织物。借助扫描电子显微镜、傅里叶变换红外光谱仪、红外热成像仪对热电织物的结构和性能进行表征与分析。结果表明:热电织物兼具织物优异柔韧性和PEODT∶Tos 良好的导电性,电导率可达2.1 S/cm;当在热电织物两端施加10 V的电压时,其表面温度提高近20 ℃,具有良好电热性能,可将电能有效地转化为热能;由热电织物所构建的热电转化装置处在温差为20 ℃的温度梯度场中时,可持续输出0.3 mV的电压。

关键词: 热电织物, 聚(3,4-乙烯二氧噻吩), 低温原位界面聚合, 甲苯磺酸离子, 热电转化装置, 聚丙烯非织造布

Abstract:

In order to prepare high-conductivity, flexible, and multifunctional thermoelectric fabrics, a low-temperature in-situ interfacial polymerization method was proposed to fabricate core-shell thermoelectric textile with p-toluenesulfonic acid ion-doped poly(3,4-ethylenedioxythiophene) (PEDOT∶Tos) coated with polypropylene(PP) fibers. The structure and performance of thermoelectric fabrics were characterized and analyzed by scanning electron microscope, Fourier transform infrared spectrometer, and infrared thermal imager. The results show that the prepared thermoelectric fabrics have excellent flexibility as a textile materials, and good conductivity due to PEDOT∶Tos with conductivity reaching 2.1 S/cm. When a voltage of 10V is applied to both ends of a thermoelectric fabric, the surface temperature increases by about 20 ℃, indicating good electric heating performance and effective conversion of electric energy into heat energy. When the thermoelectric conversion device constructed using the thermoelectric fabric is placed in a temperature gradient field with a temperature difference of 20 ℃, it can continuously output a voltage of 0.3 mV.

Key words: thermoelectric fabric, poly(3,4-ethylenedioxythiophene), low-temperature interfacial polymerization, p-toluenesulfonic acid ion, thermoelectric conversion device, polypropylene nonwoven fabric

中图分类号: 

  • TQ342.83

图1

PP非织造布和PP/PEDOT热电织物的微观扫描电镜照片"

图2

PP和PP/PEDOT热电织物傅里叶变换红外光谱图"

图3

PP/PEDOT热电织物导电测试图"

图4

PP/PEDOT热电织物电阻变化"

图5

PP/PEDOT热电织物超声清洗后的外观"

图6

PP/PEDOT热电织物在超声清洗测试下电阻变化"

图7

不同电压下PP/PEDOT热电织物的红外热成像图"

图8

PP/PEDOT热电织物电热曲线"

图9

纺织热电装置热电转换测试"

[1] BHARTI M, SINGH A, SAMANTA S, et al. Flexo-green polypyrrole-silver nanocomposite films for thermoelectric power generation[J]. Energy Conversion & Management, 2017,144:143-152.
[2] LI J, TANG X, LI H, et al. Synjournal and thermoelectric properties of hydrochloric acid-doped polyaniline[J]. Synthetic Metals, 2010,160(11/12):1153-1158.
[3] YUE R, CHEN S, LU B, et al. Facile electrosynjournal and thermoelectric performance of electroactive free-standing polythieno[3,2-b]thiophene films[J]. Journal of Solid State Electrochemistry, 2011,15(3):539-548.
[4] HU X, CHEN G, WANG X, et al. Tuning thermoelectric performance by nanostructure evolution of a conducting polymer[J]. Journal of Materials Chemistry A, 2015,3(42):20896-20902.
[5] YAO Q, CHEN L, ZHANG W, et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites[J]. ACS Nano, 2010,4(4):2445-2451.
[6] YU C, KIM Y S, KIM D, et al. Thermoelectric behavior of segregated-network polymer nanocomposites[J]. Nano Letters, 2008,8(12):4428-4432.
pmid: 19367932
[7] JIA Y, SHEN L, LIU J, et al. An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors[J]. Journal of Materials Chemistry C, 2019,7(12):3496-3502.
[8] LIU J, JIA Y, JIANG Q, et al. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting[J]. ACS Applied Materials & Interfaces, 2018,10(50):44033-44040.
pmid: 30523679
[9] BUBNOVA O, KHAN Z U, MALTI A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythio-phene)[J]. Nature Materials, 2011,10(6):429-433.
pmid: 21532583
[10] WU Q, HU J. A novel design for a wearable thermoelectric generator based on 3D fabric struc-ture[J]. Smart Materials and Structures, 2017,26(4):045037.
[11] GHOSH S, GANGULY S, REMANAN S, et al. Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding[J]. Composites Science and Technology, 2019,181:107682.
[12] HYLAND M, HUNTER H, LIU J, et al. Wearable thermoelectric generators for human body heat harves-ting[J]. Applied Energy, 2016,182:518-524.
[13] RYAN J D, MENGISTIE D A, GABRIELSSON R, et al. Machine-washable PEDOT: PSS dyed silk yarns for electronic textiles[J]. Acs Applied Materials & Interfaces, 2017,9(10):9045-9050.
doi: 10.1021/acsami.7b00530 pmid: 28245105
[14] ANDREW T L, ZHANG L, CHENG N, et al. Melding vapor-phase organic chemistry and textile manufacturing to produce wearable electronics[J]. Accounts of Chemical Research, 2018,51(4):850-859.
pmid: 29521501
[15] TAGGART D K, YANG Y, KUNG S C, et al. Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires[J]. Nano Letters, 2010,11(1):125-131.
doi: 10.1021/nl103003d pmid: 21133353
[16] SINGH K, OHLAN A, SAINI P, et al. Poly (3,4‐ethylenedioxythiophene) γ‐Fe2O3 polymer composite-super paramagnetic behavior and variable range hopping 1D conduction mechanism-synjournal and characteriza-tion[J]. Polymers for Advanced Technologies, 2010,19(3):229-236.
doi: 10.1002/(ISSN)1099-1581
[17] LI C, IMAE T. Electrochemical and optical properties of the poly(3,4-ethylenedioxythiophene) film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroborate medium[J]. Macromolecules, 2004,37(7):2411-2416.
doi: 10.1021/ma035188w
[1] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[2] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[3] 孔祥曌 麻文效 张晓峰. 聚丙烯非织造布的亲金属离子功能化改性[J]. 纺织学报, 2016, 37(4): 33-37.
[4] 陈钢进;肖慧明;王耀翔. 聚丙烯非织造布的驻极体电荷存储特性和稳定性[J]. 纺织学报, 2007, 28(9): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!