纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 9-15.doi: 10.13475/j.fzxb.20200802807

• 纤维材料 • 上一篇    下一篇

氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能

竺哲欣, 马晓吉, 夏林, 吕汪洋(), 陈文兴   

  1. 浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
  • 收稿日期:2020-08-04 修回日期:2021-01-29 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 吕汪洋
  • 作者简介:竺哲欣(1989—),男,讲师,博士。主要研究方向为环境净化功能纤维材料。
  • 基金资助:
    浙江省自然科学基金青年基金项目(LQ19E030023);国家自然科学基金青年基金项目(22006136)

Photocatalytic performance of iron hexadecachlorophthalocyanine/ polyacrylonitrile composite nanofibers synergistically enhanced by chloride ion

ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang(), CHEN Wenxing   

  1. School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-08-04 Revised:2021-01-29 Online:2021-05-15 Published:2021-05-20
  • Contact: Lü Wangyang

摘要:

为提升粉末催化剂的催化活性及重复使用性能,高效去除高盐废水中的有机污染物,采用静电纺丝技术制备十六氯铁酞菁/聚丙烯腈(FePcCl16/PAN)复合纳米纤维。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪等表征了纳米纤维的微观形貌、结晶结构等特性。选取卡马西平(CBZ)作为模型污染物,研究了氯离子存在下,FePcCl16/PAN复合纳米纤维光活化过一硫酸盐的催化降解活性。结果表明:FePcCl16可有效分散于PAN纳米纤维中,从而避免因FePcCl16分子团聚而影响催化活性;在模拟太阳光照射下,随着氯离子质量浓度的增加,FePcCl16/PAN复合纳米纤维催化活性逐渐增强;在较高氯离子质量浓度(6.0~18.0 g/L)下,CBZ及其降解产物(包括具有潜在毒性的氯代有机副产物)都能降解完全,FePcCl16/PAN复合纳米纤维循环降解5次后仍具有良好的催化降解性能。

关键词: 有机污染物降解, 静电纺丝, 十六氯铁酞菁, 纳米纤维, 降解产物, 光催化活性, 废水处理

Abstract:

In order to improve the catalytic activity and reusability of the powder catalyst and effectively remove the organic pollutants in high salinity wastewater, iron hexadecachlorophthalocyanine (FePcCl16)/polyacrylonitrile(PAN) composite nanofibers were prepared using electrospinning technology. The composite nanofibers were characterized by field emission scaning electron microscopy, transmission electron microscopy and X-ray diffraction. Carbamazepine (CBZ) was selected as the model pollutant to study the photocatalytic degradation activity of photoactivated persulfate of composite nanofibers in the presence of chloride ions. The results show that FePcCl16 was well dispersed in PAN nanofibers, and FePcCl16 molecular clustering was successfully avoided to maintain its catalytic performance. Under simulated sunlight, the catalytic activity of composite nanofibers increased with the increase of chloride ion concentration. At higher chloride ion concentrations (6.0-18.0 g/L), CBZ and its degradation products (including potentially toxic chlorinated compounds) can be completely degraded. After 5 degradation recycling tests, FePcCl16/PAN still demonstrate good catalytic degradation performance.

Key words: organic pollutant degradation, electrospinning, iron hexadecachlorophthalocyanine, nanofiber, degradation product, photocatalytic activity, wasterwater treatment

中图分类号: 

  • O634.32

图1

PAN和FePcCl16/PAN复合纳米纤维的扫描电镜照片(×20 000)"

图2

PAN和FePcCl16/PAN复合纳米纤维的透射电镜照片(×20 000)"

图3

PAN、FePcCl16/PAN复合纳米纤维和FePcCl16粉末的X射线衍射光谱图"

图4

FePcCl16粉末与FePcCl16/PAN复合纳米纤维光催化性能比较"

图5

氯离子质量浓度对FePcCl16/PAN复合纳米纤维光催化降解CBZ影响"

图6

FePcCl16/PAN复合纳米纤维的循环使用性能"

表1

氯离子存在下复合纳米纤维降解CBZ的产物"

降解产物编号 化学式 质荷比 保留时间/min
A C13H9N 180.082 6 5.72
B C13H9NO 196.077 3 4.33
C C14H9NO 210.092 3 5.93
D C15H10N2O2 251.082 4 3.73
E1 C15H12N2O2 253.098 0 3.20
E2 C15H12N2O2 253.092 8 3.97
E3 C15H12N2O2 253.098 1 4.57
F C15H13NO 224.108 3 4.14
G1 C13H8ClN 214.042 3 6.81
G2 C13H8ClN 214.043 3 6.90
G3 C13H8ClN 214.043 0 7.39

图7

氯离子质量浓度对FePcCl16/PAN复合纳米纤维光催化降解氯代有机副产物影响"

图8

氯代有机副产物G1、G2、G3的质谱图"

图9

氯离子存在下FePcCl16/PAN复合纳米纤维光催化降解CBZ的降解历程"

[1] GUO Y, ZHOU X, ZHANG Y, et al. Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: performance, mechanism and toxicity[J]. Journal of Environmental Science, 2020,91:10-21.
[2] GARCIA-ESPIONZA J D, MIJAYLOVA-NACHEVA P, AVILES-FLORES M. Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity[J]. Chemosphere, 2018,192:142-151.
doi: 10.1016/j.chemosphere.2017.10.147
[3] AZAROFF A, MONPERRUS M, MIOSSEC C, et al. Microbial degradation of hydrophobic emerging contaminants from marine sediment slurries (capbreton canyon) to pure bacterial strain[J]. Journal of Hazardous Materials, 2021,402:123477.
doi: 10.1016/j.jhazmat.2020.123477
[4] 郭丽, 袁颐进, 冯丽贞, 等. 电活化过硫酸盐降解全氟辛酸及其中间产物的研究[J]. 环境科学学报, 2020,40(6):2045-2054.
GUO Li, YUAN Yijin, FENG Lizhen, et al. Electrochemical activated persulfate to degrade perfluorooctanoic acid and the analysis of intermediate products[J]. Acta Scientiae Circumstantiae, 2020,40(6):2045-2054.
[5] 杨生浛, 毕文龙, 张建, 等. 硫酸根自由基对甲基橙的处理效果及机理[J]. 工业水处理, 2020,40(4):55-59.
YANG Shenghan, BI Wenlong, ZHNAG Jian, et al. Effect and mechanism of sulfate radical on methyl orange treatment[J]. Industrial Water Treatment, 2020,40(4):55-59.
[6] HUANG Y, SHENG B, YANG F, et al. Chlorine incorporation into dye degradation by-product (coumarin) in UV/peroxymonosulfate process: a negative case of end-of-pipe treatment[J]. Chemosphere, 2019,229:374-382.
doi: 10.1016/j.chemosphere.2019.05.024
[7] LAI X, NING X, CHEN J, et al. Comparison of the Fe2+/H2O2 and Fe2+/PMS systems in simulated sludge: removal of PAHs, migration of elements and formation of chlorination by-products [J]. Journal of Hazardous Material, 2020,398:122826.
doi: 10.1016/j.jhazmat.2020.122826
[8] 刘布雷, 张改, 陈卫星, 等. 金属酞菁/TiO2的制备及脱硫性能研究[J]. 应用化工, 2019,48(5):1054-1057.
LIU Bulei, ZHANG Gai, CHEN Weixing, et al. Preparation and desulfurization property of phthalocyanine/TiO2 catysts[J]. Applied Chemical Industry, 2019,48(5):1054-1057.
[9] DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019,357:198-208.
doi: 10.1016/j.cej.2018.09.094
[10] WANG L, LU W, NI D, et al. Solar-initiated photocatalytic degradation of carbamazepine on excited-state hexadecachlorophthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2017,330:628-634.
[11] 代岩, 王硕, 田黎明, 等. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018,38(7):89-92.
DAI Yan, WANG Shuo, TIAN Liming, et al. Preparation of FePc-TiO2/CS composites and application in photocatalytic degradation of dye wastewater[J]. Modern Chemical Industry, 2018,38(7):89-92.
[12] 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020,41(5):8-14.
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020,41(5):8-14.
[13] 张梦媛, 黄庆林, 黄岩, 等. 静电纺丝聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019,40(9):1-7.
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application[J]. Journal of Textile Research, 2019,40(9):1-7.
doi: 10.1177/004051757004000101
[14] KONAREV D V, KUZMIN A V, ISHIKAWA M, et al. Layered salts with iron hexadecachlorophthalocyanineanions-the formation of [{FeCl16Pc}(2)](3-) dimers contain-ing [(FeCl16Pc)-Cl-I(2-)](-) and diamagne-tic [(FeCl16Pc)-Cl-0(2-)](2-)[J]. European Journal of Inorganic Chemistry, 2014,24:3863-3870.
[15] ZHANG T Y, XU B, YAO S, et al. Conversion of chlorine/nitrogen species and formation of nitrogenousdisinfection by-products in the pre-chlorination/post-UV treatment of sulfamethoxazole[J]. Water Research, 2019,160:188-196.
doi: 10.1016/j.watres.2019.05.063
[16] ETO S, TANAKA N, NODA H, et al. Chiral separation of 10, 11-dihydro-10, 11-transdihydroxycarbamazepine, a metabolite of carbamazepine with two asymmetric carbons, in human serum[J]. Journal of Chromatography, 1996,677:328-330.
[17] CHIRON S, MINERO C, VIONE D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006,40:5977-5983.
doi: 10.1021/es060502y
[18] SUN S, ZENG X, LEMLEY A T. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes[J]. Journal of Hazardous Materials, 2013,252/253:155-165.
doi: 10.1016/j.jhazmat.2013.02.045
[19] MCDOWELL D C, HUBER M M, WAGNER M, et al. Ozonation of carbamazepine in drinking water: ide.pngication and kinetic study of major oxidation products[J]. Environmental Science & Technology, 2005,39:8014-8022.
doi: 10.1021/es050043l
[20] RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(II)-activated persulfate process[J]. Journal of Hazardous Materials, 2014,268:23-32.
doi: 10.1016/j.jhazmat.2014.01.010
[21] ZHENG M, XU G, PEI J, et al. EB-radiolysis of carbamazepine: in pure-water with different ionsand in surface water[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014,302:139-147.
doi: 10.1007/s10967-014-3322-8
[22] ZHU Z, LU W, XU T, et al. High-valent iron-oxo complexes as dominant species to eliminate pharmaceuticals and chloride-containing intermediates by the activation of peroxymonosulfate under visible irradiation[J]. Catalysis Letters, 2020,150(5):1355-1367.
doi: 10.1007/s10562-019-03047-4
[1] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[2] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[3] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22.
[4] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[5] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[6] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[7] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[8] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[9] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[10] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[11] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[12] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[13] 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134.
[14] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[15] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!