纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 9-15.doi: 10.13475/j.fzxb.20200802807
ZHU Zhexin, MA Xiaoji, XIA Lin, LÜ Wangyang(), CHEN Wenxing
摘要:
为提升粉末催化剂的催化活性及重复使用性能,高效去除高盐废水中的有机污染物,采用静电纺丝技术制备十六氯铁酞菁/聚丙烯腈(FePcCl16/PAN)复合纳米纤维。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪等表征了纳米纤维的微观形貌、结晶结构等特性。选取卡马西平(CBZ)作为模型污染物,研究了氯离子存在下,FePcCl16/PAN复合纳米纤维光活化过一硫酸盐的催化降解活性。结果表明:FePcCl16可有效分散于PAN纳米纤维中,从而避免因FePcCl16分子团聚而影响催化活性;在模拟太阳光照射下,随着氯离子质量浓度的增加,FePcCl16/PAN复合纳米纤维催化活性逐渐增强;在较高氯离子质量浓度(6.0~18.0 g/L)下,CBZ及其降解产物(包括具有潜在毒性的氯代有机副产物)都能降解完全,FePcCl16/PAN复合纳米纤维循环降解5次后仍具有良好的催化降解性能。
中图分类号:
[1] | GUO Y, ZHOU X, ZHANG Y, et al. Carbamazepine degradation by heterogeneous activation of peroxymonosulfate with lanthanum cobaltite perovskite: performance, mechanism and toxicity[J]. Journal of Environmental Science, 2020,91:10-21. |
[2] |
GARCIA-ESPIONZA J D, MIJAYLOVA-NACHEVA P, AVILES-FLORES M. Electrochemical carbamazepine degradation: effect of the generated active chlorine, transformation pathways and toxicity[J]. Chemosphere, 2018,192:142-151.
doi: 10.1016/j.chemosphere.2017.10.147 |
[3] |
AZAROFF A, MONPERRUS M, MIOSSEC C, et al. Microbial degradation of hydrophobic emerging contaminants from marine sediment slurries (capbreton canyon) to pure bacterial strain[J]. Journal of Hazardous Materials, 2021,402:123477.
doi: 10.1016/j.jhazmat.2020.123477 |
[4] | 郭丽, 袁颐进, 冯丽贞, 等. 电活化过硫酸盐降解全氟辛酸及其中间产物的研究[J]. 环境科学学报, 2020,40(6):2045-2054. |
GUO Li, YUAN Yijin, FENG Lizhen, et al. Electrochemical activated persulfate to degrade perfluorooctanoic acid and the analysis of intermediate products[J]. Acta Scientiae Circumstantiae, 2020,40(6):2045-2054. | |
[5] | 杨生浛, 毕文龙, 张建, 等. 硫酸根自由基对甲基橙的处理效果及机理[J]. 工业水处理, 2020,40(4):55-59. |
YANG Shenghan, BI Wenlong, ZHNAG Jian, et al. Effect and mechanism of sulfate radical on methyl orange treatment[J]. Industrial Water Treatment, 2020,40(4):55-59. | |
[6] |
HUANG Y, SHENG B, YANG F, et al. Chlorine incorporation into dye degradation by-product (coumarin) in UV/peroxymonosulfate process: a negative case of end-of-pipe treatment[J]. Chemosphere, 2019,229:374-382.
doi: 10.1016/j.chemosphere.2019.05.024 |
[7] |
LAI X, NING X, CHEN J, et al. Comparison of the Fe2+/H2O2 and Fe2+/PMS systems in simulated sludge: removal of PAHs, migration of elements and formation of chlorination by-products [J]. Journal of Hazardous Material, 2020,398:122826.
doi: 10.1016/j.jhazmat.2020.122826 |
[8] | 刘布雷, 张改, 陈卫星, 等. 金属酞菁/TiO2的制备及脱硫性能研究[J]. 应用化工, 2019,48(5):1054-1057. |
LIU Bulei, ZHANG Gai, CHEN Weixing, et al. Preparation and desulfurization property of phthalocyanine/TiO2 catysts[J]. Applied Chemical Industry, 2019,48(5):1054-1057. | |
[9] |
DONG L, XU T, CHEN W, et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019,357:198-208.
doi: 10.1016/j.cej.2018.09.094 |
[10] | WANG L, LU W, NI D, et al. Solar-initiated photocatalytic degradation of carbamazepine on excited-state hexadecachlorophthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2017,330:628-634. |
[11] | 代岩, 王硕, 田黎明, 等. FePc-TiO2/CS复合材料制备及光催化降解染料废水[J]. 现代化工, 2018,38(7):89-92. |
DAI Yan, WANG Shuo, TIAN Liming, et al. Preparation of FePc-TiO2/CS composites and application in photocatalytic degradation of dye wastewater[J]. Modern Chemical Industry, 2018,38(7):89-92. | |
[12] | 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020,41(5):8-14. |
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020,41(5):8-14. | |
[13] | 张梦媛, 黄庆林, 黄岩, 等. 静电纺丝聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019,40(9):1-7. |
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application[J]. Journal of Textile Research, 2019,40(9):1-7.
doi: 10.1177/004051757004000101 |
|
[14] | KONAREV D V, KUZMIN A V, ISHIKAWA M, et al. Layered salts with iron hexadecachlorophthalocyanineanions-the formation of [{FeCl16Pc}(2)](3-) dimers contain-ing [(FeCl16Pc)-Cl-I(2-)](-) and diamagne-tic [(FeCl16Pc)-Cl-0(2-)](2-)[J]. European Journal of Inorganic Chemistry, 2014,24:3863-3870. |
[15] |
ZHANG T Y, XU B, YAO S, et al. Conversion of chlorine/nitrogen species and formation of nitrogenousdisinfection by-products in the pre-chlorination/post-UV treatment of sulfamethoxazole[J]. Water Research, 2019,160:188-196.
doi: 10.1016/j.watres.2019.05.063 |
[16] | ETO S, TANAKA N, NODA H, et al. Chiral separation of 10, 11-dihydro-10, 11-transdihydroxycarbamazepine, a metabolite of carbamazepine with two asymmetric carbons, in human serum[J]. Journal of Chromatography, 1996,677:328-330. |
[17] |
CHIRON S, MINERO C, VIONE D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006,40:5977-5983.
doi: 10.1021/es060502y |
[18] |
SUN S, ZENG X, LEMLEY A T. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes[J]. Journal of Hazardous Materials, 2013,252/253:155-165.
doi: 10.1016/j.jhazmat.2013.02.045 |
[19] |
MCDOWELL D C, HUBER M M, WAGNER M, et al. Ozonation of carbamazepine in drinking water: ide.pngication and kinetic study of major oxidation products[J]. Environmental Science & Technology, 2005,39:8014-8022.
doi: 10.1021/es050043l |
[20] |
RAO Y F, QU L, YANG H, et al. Degradation of carbamazepine by Fe(II)-activated persulfate process[J]. Journal of Hazardous Materials, 2014,268:23-32.
doi: 10.1016/j.jhazmat.2014.01.010 |
[21] |
ZHENG M, XU G, PEI J, et al. EB-radiolysis of carbamazepine: in pure-water with different ionsand in surface water[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014,302:139-147.
doi: 10.1007/s10967-014-3322-8 |
[22] |
ZHU Z, LU W, XU T, et al. High-valent iron-oxo complexes as dominant species to eliminate pharmaceuticals and chloride-containing intermediates by the activation of peroxymonosulfate under visible irradiation[J]. Catalysis Letters, 2020,150(5):1355-1367.
doi: 10.1007/s10562-019-03047-4 |
[1] | 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114. |
[2] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[3] | 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22. |
[4] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[5] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[6] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[7] | 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113. |
[8] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[9] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[10] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[11] | 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147. |
[12] | 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155. |
[13] | 程绿竹, 王宗乾, 王邓峰, 申佳锟, 李长龙. 高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2021, 42(02): 129-134. |
[14] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[15] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
|