纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 62-68.doi: 10.13475/j.fzxb.20200803907

• 纤维材料 • 上一篇    下一篇

导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能

周歆如1, 周筱雅1, 马咏健1, 胡铖烨1, 赵晓曼1,2, 洪剑寒1,2, 韩潇1,2()   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2020-08-07 修回日期:2021-01-14 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 韩潇
  • 作者简介:周歆如(1998—),女,硕士生。主要研究方向为功能纺织品的开发与应用。
  • 基金资助:
    国家级大学生创新创业训练计划项目(201910349029);浙江省公益技术研究计划项目(LGG20E030002);浙江省公益技术研究计划项目(LGJ21E030001);绍兴文理学院国际科技合作项目(2019LGGH1003)

Preparation and pressure sensitivity of conductive polyaniline/polyurethane foam

ZHOU Xinru1, ZHOU Xiaoya1, MA Yongjian1, HU Chengye1, ZHAO Xiaoman1,2, HONG Jianhan1,2, HAN Xiao1,2()   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
  • Received:2020-08-07 Revised:2021-01-14 Online:2021-04-15 Published:2021-04-20
  • Contact: HAN Xiao

摘要:

为制备具有良好回弹性能及传感性能的压敏材料,以高弹性多孔聚氨酯泡沫为基材,采用原位聚合法制备导电聚苯胺/聚氨酯泡沫,对其结构与性能进行研究,分析其在不同压缩应变作用下的压敏传感性能,并用于人体运动的监控。结果表明:聚氨酯泡沫表面及内部空隙中附着了聚苯胺,使其具有良好的导电性能,电阻率降至1.214×103 Ω·cm;与处理前的聚氨酯泡沫相比,导电聚苯胺/聚氨酯泡沫的弹性模量与最大载荷降低;由导电聚苯胺/聚氨酯泡沫制备的压敏传感器具有良好的传感性能,在30%和50%的压缩率下表现出良好的传感线性度、敏感度与重复性,但在80%压缩率下的传感性能有所下降,该压敏传感器具备人体运动行为监测的功能。

关键词: 聚氨酯泡沫, 原位聚合法, 聚苯胺, 压力传感器, 运动监控

Abstract:

In order to prepare pressure-sensitive materials with good resilience and sensing properties, a conductive polyaniline/polyurethane foam was prepared by in-situ polymerization using high elastic porous polyurethane foam as substrate. The structure and properties of conductive polyaniline/polyurethane foam were studied. The pressure sensitivity of the conductive polyaniline/polyurethane foam under different compressive strains were analyzed and used for monitoring human motion. The results show that polyaniline is attached to the surface and internal gap of the polyurethane foam, demonstrating good electrical conductivity, and the resistivity decreased to 1.214×103 Ω·cm. Compared with the polyurethane foam before treatment, the elastic modulus and maximum load of the conductive polyaniline/polyurethane foam are reduced. The pressure sensor prepared from the conductive polyaniline/polyurethane foam has good sensing performance. It exhibits good linearity, sensitivity and repeatability at 30% and 50% compression rate, but the sensing performance at 80% compression rate decreases. Jogging monitoring shows that the pressure sensor is able to monitor human movement.

Key words: polyurethane foam, in-situ polymerization, polyaniline, pressure sensor, movement monitoring

中图分类号: 

  • TQ317

图1

PUF 和PANI/PUF的外观形貌"

图2

PANI/PUF的电阻测试方法"

图3

改装后力学性能测试夹具示意图"

图4

压敏传感测试系统"

图5

PANI/PUF压敏传感器及其人体运动监测示意图"

图6

导电处理前后PUF的表面形貌(×700)"

图7

PUF 和PANI/PUF的力学曲线"

图8

PUF 和PANI/PUF在不同循环次数下的压缩量和最大载荷"

图9

不同压缩率下PANI/PUF的电阻变化情况"

图10

PANI/PUF在松弛状态和压缩状态下的结构模型"

表1

线性拟合方程"

压缩率/% 拟合方程 相关系数r
30 y=-0.684 1x + 1.031 9 0.981
50 y=-0.351 7x + 3.225 9 0.941
80 y=-0.323x + 4.697 3 0.802

图11

不同压缩率下PANI/PUF的电阻变化"

图12

慢跑时传感器的电阻变化情况"

表2

慢跑时间间隔"

步数间隔 起始时间/s 结束时间/s 持续时间/s
8~10 4.76 5.96 1.20
10~12 5.96 7.08 1.12
12~14 7.08 8.16 1.08
14~16 8.16 9.34 1.18
16~18 9.34 10.44 1.10
18~20 10.44 11.60 1.16
20~22 11.60 12.76 1.16
22~24 12.76 13.86 1.10
24~26 13.86 14.86 1.00
26~28 14.86 16.18 1.32
平均值 1.142
[1] 梁立容, 李宁, 魏爱香. 柔性可穿戴压力传感器的研究进展[J]. 应用化工, 2020,49(344):249-252.
LIANG Lirong, LI Ning, WEI Aixiang. Progress in the research of flexible pressure sensor[J]. Applied Chemical Industry, 2020,49(344):249-252.
[2] CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Advanced Materials, 2016,28:4203-4218.
doi: 10.1002/adma.201504150 pmid: 26779680
[3] KHAN Y, OSTFELD A E, LOCHNER C M, et al. Monitoring of vital signs with flexible and wearable medical devices[J]. Advanced Materials, 2016,28:4376-4395.
[4] KANG D, PIKHISTA P V, CHOI Y W, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature, 2014,516:222-226.
pmid: 25503234
[5] PANG C, LEE G Y, KIM T, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012,11:795-801.
doi: 10.1038/nmat3380 pmid: 22842511
[6] LEI Z, WANG Q, SUN S, et al. A bioinspired mineral hydrogel as a self-healable mechanically adaptable ionic skin for highly sensitive pressure sensing[J]. Advanced Materials, 2017,29(22):1-6.
[7] 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020,34(10):19173-19182.
CHANG Shengnan, LI Jin, LIU Hao. Research progress of flexible strain/pressure based on biomaterial derived materials[J]. Materials Reports, 2020,34(10):19173-19182.
[8] 陈丹青, 陈国华. 导电聚氨酯泡沫塑料的成形方法[J]. 材料导报, 2008,22(5):42-45.
CHEN Danqing, CHEN Guohua. Molding methods of conductive PU foam plastic[J]. Materials Reports, 2008,22(5):42-45.
[9] ZHAI Y, YUY F, ZHOU K K, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122985.
doi: 10.1016/j.cej.2020.127420 pmid: 33106747
[10] MEHDI J, HASAN B. A multi-scale finite element approach to mechanical performance of polyurethane/CNT nanocomposite foam[J]. Materials Today Communications, 2020. DOI: 10.1016/j.mtcomm.2020.101081.
doi: 10.1016/j.mtcomm.2016.12.003 pmid: 28989952
[11] 司倩倩, 陈厚和, 张幺玄, 等. 网状聚氨酯泡沫化学镀镍工艺的研究[J]. 电镀与环保, 2014,34(1):29-32.
SI Qianqian, CHEN Houhe, ZHANG Yaoxuan, et al. A study of electroless Ni plating on reticulated polyurethane foam[J]. Electroplating & Pollution Control, 2014,34(1):29-32.
[12] XU S M, LI X Y, SUI G P, et al. Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability[J]. Chemical Engineering Journal, 2020,381:1-11.
[13] ZHONG W B, DING X C, LI W X, et al. Facile fabrication of conductive grapheme/polyurethane foam composite and its application on flexible piezo-resistive sensors[J]. Polymers, 2019,11(8):1289-1298.
[14] ZHANG S D, LIU H, YANG S Y, et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane pponge coated with a cracked cellulose nanofibril/silver nanowire layer[J]. ACS Applied Materials & Interfaces, 2019,11(11):10922-10932.
doi: 10.1021/acsami.9b00900 pmid: 30794745
[15] WAN Y Q, QIN N, WANG Y F, et al. Sugar-templated conductive polyurethane-polypyrrole sponges for wide-range force sensing[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123103.
pmid: 33106747
[16] MUTHUKUMA N, THILAGAVATHI G, KANNAIAN T. Polyaniline-coated polyurethane foam for pressure sensor applications[J]. High Performance Polymers, 2016,28(3):368-375.
[17] MUTHUKUMA N, THILAGAVATHI G, KANNAIAN T. Polyaniline-coated foam electrodes for electroencephalo-graphy (EEG) measurement[J]. Journal of The Textile Institute, 2016,107(3):283-290.
[1] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[2] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[3] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[4] 王杰, 周茗玮, 汪滨, 李秀艳. 纳米纤维膜基柔性压力传感器的优化设计制备[J]. 纺织学报, 2019, 40(11): 32-37.
[5] 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116.
[6] 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104.
[7] 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100.
[8] 韩潇 洪剑寒 惠林 史韩萍 金丽华. 导电涤纶纱连续制备工艺与性能[J]. 纺织学报, 2018, 39(02): 20-25.
[9] 郝鸿飞 刘晓艳. 胆固醇液晶热致变色微胶囊的制备及其性能[J]. 纺织学报, 2017, 38(06): 75-79.
[10] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[11] 李兰倩 卢明 刘一萍 谭炼 赵振云 刘祖兰 . 聚苯胺/蚕丝复合织物的制备及其pH值响应性[J]. 纺织学报, 2016, 37(4): 91-95.
[12] 洪剑寒 潘志娟 姚穆. 超高分子量聚乙烯/聚苯胺导电针织物的应变传感性能[J]. 纺织学报, 2016, 37(2): 73-78.
[13] 姜亚明 李宁 张艳梅 . 膝部防护用材料静态缓压性能[J]. 纺织学报, 2016, 37(09): 53-58.
[14] 范菲 王潮霞. 基于聚氨酯壁材的单/双壳微胶囊光致变色性能及机制[J]. 纺织学报, 2015, 36(02): 81-85.
[15] 乐珮珮 王少伟 李晓强 葛明桥. 氧化还原一步法制备聚苯胺/银复合导电织物[J]. 纺织学报, 2014, 35(4): 37-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!