纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 62-68.doi: 10.13475/j.fzxb.20200803907
周歆如1, 周筱雅1, 马咏健1, 胡铖烨1, 赵晓曼1,2, 洪剑寒1,2, 韩潇1,2()
ZHOU Xinru1, ZHOU Xiaoya1, MA Yongjian1, HU Chengye1, ZHAO Xiaoman1,2, HONG Jianhan1,2, HAN Xiao1,2()
摘要:
为制备具有良好回弹性能及传感性能的压敏材料,以高弹性多孔聚氨酯泡沫为基材,采用原位聚合法制备导电聚苯胺/聚氨酯泡沫,对其结构与性能进行研究,分析其在不同压缩应变作用下的压敏传感性能,并用于人体运动的监控。结果表明:聚氨酯泡沫表面及内部空隙中附着了聚苯胺,使其具有良好的导电性能,电阻率降至1.214×103 Ω·cm;与处理前的聚氨酯泡沫相比,导电聚苯胺/聚氨酯泡沫的弹性模量与最大载荷降低;由导电聚苯胺/聚氨酯泡沫制备的压敏传感器具有良好的传感性能,在30%和50%的压缩率下表现出良好的传感线性度、敏感度与重复性,但在80%压缩率下的传感性能有所下降,该压敏传感器具备人体运动行为监测的功能。
中图分类号:
[1] | 梁立容, 李宁, 魏爱香. 柔性可穿戴压力传感器的研究进展[J]. 应用化工, 2020,49(344):249-252. |
LIANG Lirong, LI Ning, WEI Aixiang. Progress in the research of flexible pressure sensor[J]. Applied Chemical Industry, 2020,49(344):249-252. | |
[2] |
CHOI S, LEE H, GHAFFARI R, et al. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J]. Advanced Materials, 2016,28:4203-4218.
doi: 10.1002/adma.201504150 pmid: 26779680 |
[3] | KHAN Y, OSTFELD A E, LOCHNER C M, et al. Monitoring of vital signs with flexible and wearable medical devices[J]. Advanced Materials, 2016,28:4376-4395. |
[4] |
KANG D, PIKHISTA P V, CHOI Y W, et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature, 2014,516:222-226.
pmid: 25503234 |
[5] |
PANG C, LEE G Y, KIM T, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012,11:795-801.
doi: 10.1038/nmat3380 pmid: 22842511 |
[6] | LEI Z, WANG Q, SUN S, et al. A bioinspired mineral hydrogel as a self-healable mechanically adaptable ionic skin for highly sensitive pressure sensing[J]. Advanced Materials, 2017,29(22):1-6. |
[7] | 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020,34(10):19173-19182. |
CHANG Shengnan, LI Jin, LIU Hao. Research progress of flexible strain/pressure based on biomaterial derived materials[J]. Materials Reports, 2020,34(10):19173-19182. | |
[8] | 陈丹青, 陈国华. 导电聚氨酯泡沫塑料的成形方法[J]. 材料导报, 2008,22(5):42-45. |
CHEN Danqing, CHEN Guohua. Molding methods of conductive PU foam plastic[J]. Materials Reports, 2008,22(5):42-45. | |
[9] |
ZHAI Y, YUY F, ZHOU K K, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122985.
doi: 10.1016/j.cej.2020.127420 pmid: 33106747 |
[10] |
MEHDI J, HASAN B. A multi-scale finite element approach to mechanical performance of polyurethane/CNT nanocomposite foam[J]. Materials Today Communications, 2020. DOI: 10.1016/j.mtcomm.2020.101081.
doi: 10.1016/j.mtcomm.2016.12.003 pmid: 28989952 |
[11] | 司倩倩, 陈厚和, 张幺玄, 等. 网状聚氨酯泡沫化学镀镍工艺的研究[J]. 电镀与环保, 2014,34(1):29-32. |
SI Qianqian, CHEN Houhe, ZHANG Yaoxuan, et al. A study of electroless Ni plating on reticulated polyurethane foam[J]. Electroplating & Pollution Control, 2014,34(1):29-32. | |
[12] | XU S M, LI X Y, SUI G P, et al. Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability[J]. Chemical Engineering Journal, 2020,381:1-11. |
[13] | ZHONG W B, DING X C, LI W X, et al. Facile fabrication of conductive grapheme/polyurethane foam composite and its application on flexible piezo-resistive sensors[J]. Polymers, 2019,11(8):1289-1298. |
[14] |
ZHANG S D, LIU H, YANG S Y, et al. Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane pponge coated with a cracked cellulose nanofibril/silver nanowire layer[J]. ACS Applied Materials & Interfaces, 2019,11(11):10922-10932.
doi: 10.1021/acsami.9b00900 pmid: 30794745 |
[15] |
WAN Y Q, QIN N, WANG Y F, et al. Sugar-templated conductive polyurethane-polypyrrole sponges for wide-range force sensing[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.123103.
pmid: 33106747 |
[16] | MUTHUKUMA N, THILAGAVATHI G, KANNAIAN T. Polyaniline-coated polyurethane foam for pressure sensor applications[J]. High Performance Polymers, 2016,28(3):368-375. |
[17] | MUTHUKUMA N, THILAGAVATHI G, KANNAIAN T. Polyaniline-coated foam electrodes for electroencephalo-graphy (EEG) measurement[J]. Journal of The Textile Institute, 2016,107(3):283-290. |
[1] | 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131. |
[2] | 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97. |
[3] | 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25. |
[4] | 王杰, 周茗玮, 汪滨, 李秀艳. 纳米纤维膜基柔性压力传感器的优化设计制备[J]. 纺织学报, 2019, 40(11): 32-37. |
[5] | 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116. |
[6] | 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104. |
[7] | 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100. |
[8] | 韩潇 洪剑寒 惠林 史韩萍 金丽华. 导电涤纶纱连续制备工艺与性能[J]. 纺织学报, 2018, 39(02): 20-25. |
[9] | 郝鸿飞 刘晓艳. 胆固醇液晶热致变色微胶囊的制备及其性能[J]. 纺织学报, 2017, 38(06): 75-79. |
[10] | 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46. |
[11] | 李兰倩 卢明 刘一萍 谭炼 赵振云 刘祖兰 . 聚苯胺/蚕丝复合织物的制备及其pH值响应性[J]. 纺织学报, 2016, 37(4): 91-95. |
[12] | 洪剑寒 潘志娟 姚穆. 超高分子量聚乙烯/聚苯胺导电针织物的应变传感性能[J]. 纺织学报, 2016, 37(2): 73-78. |
[13] | 姜亚明 李宁 张艳梅 . 膝部防护用材料静态缓压性能[J]. 纺织学报, 2016, 37(09): 53-58. |
[14] | 范菲 王潮霞. 基于聚氨酯壁材的单/双壳微胶囊光致变色性能及机制[J]. 纺织学报, 2015, 36(02): 81-85. |
[15] | 乐珮珮 王少伟 李晓强 葛明桥. 氧化还原一步法制备聚苯胺/银复合导电织物[J]. 纺织学报, 2014, 35(4): 37-0. |
|