纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 66-72.doi: 10.13475/j.fzxb.20200804008

• 纺织工程 • 上一篇    下一篇

基于仿生学的冬季针织运动面料开发与性能评价

王莉1,2, 张冰洁1,2, 王建萍1,2,3(), 刘莉4, 杨雅岚1,2, 姚晓凤1,2, 李倩文1,2, 卢悠1,2   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.同济大学 上海国际设计创新研究院, 上海 200092
    4.北京服装学院 服装艺术与工程学院, 北京 100029
  • 收稿日期:2020-08-07 修回日期:2021-01-20 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 王建萍
  • 作者简介:王莉(1996—),女,硕士生。主要研究方向为仿生面料的设计与开发。
  • 基金资助:
    国家重点研发计划“科技冬奥”重点专项资助项目(2019YFF0302100);中央高校基本科研业务费专项基金项目(2232020G-08)

Development and performance evaluation of bionic knitted winter sports fabrics

WANG Li1,2, ZHANG Bingjie1,2, WANG Jianping1,2,3(), LIU Li4, YANG Yalan1,2, YAO Xiaofeng1,2, LI Qianwen1,2, LU You1,2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai International Institute of Design & Innovation, Tongji University, Shanghai 200092, China
    4. Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2020-08-07 Revised:2021-01-20 Online:2021-05-15 Published:2021-05-20
  • Contact: WANG Jianping

摘要:

为开发出热湿性能优良的冬季针织运动面料,基于SolidWorks软件对3类蝴蝶鳞片进行几何结构三维建模,根据模型特征采用双股70 dtex(72 f)Dryarn®聚丙烯纱线作面纱,50 dtex Dryarn®聚丙烯纱线包覆17 dtex氨纶作地纱,以及150 dtex涤纶作面纱,30 dtex涤纶包覆20 dtex氨纶作地纱,在SANTONI MF8-CHN单面电子提花圆机上开发了6种仿蝴蝶鳞片结构针织面料;通过对仿生结构针织面料的保暖性、透湿性、透气性及液态水分管理能力进行测试分析,进而运用模糊数学对织物的热湿舒适性能进行综合评价。结果表面:以Dryarn®聚丙烯纱线为原料织造的蝶翅结构仿生织物不仅热湿舒适性能良好,且织造工艺简洁高效,拓宽了从织物组织结构设计方面开发功能纺织品的思路。

关键词: 针织面料, 三维建模, 蝴蝶鳞片结构, 热湿舒适性, 模糊评价

Abstract:

To develop knitted winter fabrics with better thermal-wet comfort properties, three types of butterfly scales were selected to construct the geometric structure 3-D model using SolidWorks software. Using 70 dtex(72 f) double Dryarn® polypropylene yarn as surface yarn, 50 dtex Dryarn® polypropylene yarn covered 17 dtex spandex as inside yarn and 150 dtex polyester as surface yarn, 30 dtex polyester covered 20 dtex spandex as inside yarn, 6 knitted fabrics with imitation butterfly scale were developed on the SANTONI MF8-CHN computerized jacquard weft circular knitting machine according to the characteristics of 3-D model. The thermal-wet comfort of bionic knitted fabrics were studied by testing and analyzing the warmth retention, moisture permeability, air permeability and moisture management ability, and the comprehensive evaluation of thermal-wet comfort was carried out by using the fuzzy mathematical evaluation method. The results show that the bionic fabrics of butterfly scale structure with Dryarn® polypropylene yarn as surface yarn not only has good thermal-wet comfort performance, but can also manufactured conveniently and efficiently in terms of knitting technology. The finding broadens the idea of developing functional textiles from the aspect of fabric structure design.

Key words: knitted fabric, 3-D modeling, butterfly scale structure, thermal-wet comfort, fuzzy evaluation

中图分类号: 

  • TS941.71

图1

蝴蝶鳞片表面形貌SEM照片"

图2

3类蝴蝶鳞片结构三维模型"

图3

仿生织物编织意匠图"

图4

仿生织物形貌图"

表1

织物规格参数"

组别 织物编号 纱线种类 结构 面密度/
(g·m-2)
厚度/mm 横密/
(纵行·(5 cm)-1)
纵密/
(横列·(5 cm) -1)
A组 1# 聚丙烯纱线 波浪结构 497.3 2.116 66 95
2# 聚丙烯纱线 蝶翅结构 654.1 3.327 62 86
3# 聚丙烯纱线 蜂窝结构 579.3 2.684 75 115
B组 4# 涤纶 波浪结构 492.5 2.215 68 100
5# 涤纶 蝶翅结构 643.9 3.367 65 97
6# 涤纶 蜂窝结构 564.9 2.823 75 125

表2

织物保暖性测试结果"

织物
编号
热阻/
(m2·K·W-1)
传热系数/
(W·m-2·℃-1)
克罗值/
(10-3clo)
保温率/%
A组 1# 63.145 15.855 407.30 52.99
2# 104.765 9.565 676.05 65.13
3# 75.845 13.240 489.25 57.46
B组 4# 57.44 19.29 336.65 49.61
5# 83.88 12.085 541.10 58.79
6# 65.725 15.65 423.95 52.61

图5

织物厚度和保温率关系"

图6

仿生织物透气性测试结果"

图7

仿生织物透湿率测试结果"

表3

织物液态水分管理测试结果"

组别 织物编号 WTT/s WTB/s ART/(%·s-1) ARB/(%·s-1) MWRT/mm MWRB/mm SST/(mm·s-1) SSB/(mm·s-1) R/%
A组 1# 18.26 46.24 171.21 127.02 5 10 0.272 0.176 102.13
2# 22.31 32.66 69.65 35.90 10 10 0.255 0.333 134.13
3# 27.95 36.84 72.69 37.14 5 5 0.178 0.135 -106.93
B组 4# 17.14 119.95 230.97 0 5 0 0.289 0 -423.37
5# 11.98 119.95 77.60 0 5 0 0.442 0 -429.22
6# 16.28 119.95 81.41 0 5 0 0.204 0 -556.20
[1] CHEN Qing, FAN Jintu, AU Yuhan, et al. Development and characterization of plant structured warp knitted fabric and garment[J]. Fibers and Polymers, 2015,16(6):1430-1440.
doi: 10.1007/s12221-015-1430-x
[2] NIU S C, LI B, MU Z Z, et al. Excellent structure-based mu.pngunction of morpho butterfly wings: a review[J]. Bionic Engineering, 2015,12(2):170-189.
[3] LUTZ T W. The role of butterfly wings in regulation of body temperature[J]. Journal of Insect Physiology. 1975,21(8):1921-1930.
doi: 10.1016/0022-1910(75)90224-3
[4] 房岩, 孙刚, 王同庆, 等. 蝴蝶翅膀表面非光滑鳞片对润湿性的影响[J]. 吉林大学学报(工学版), 2007(3):582-586.
FANG Yan, SUN Gang, WANG Tongqing, et al. Effect of non-smooth scale on surface wet ability of butterfly wings[J]. Journal of Jilin University(Engineering and Technology Edition), 2007(3):582-586.
[5] IGOR K. The fuctional Role of the hollow region of the butterfly pyrameis atalanta(L.) scale[J]. Journal of Bionic Engineering, 2008,9(3):224-230
doi: 10.1016/S1672-6529(11)60105-4
[6] HAN Z W, MU Z Z, LI BO, et al. Bioinspired omnidirectional self-stable reflectors with multiscale hierarchical structures[J]. ACS Applied Materials & Interfaces, 2017,9(34):29285-29294.
[7] TIAN X C, SONG G F, DING X, et al. Photonic structure arrays generated using butterfly wing scales as biological units[J]. Journal of Materials Chemistry, 2015,3(9):1743-1747.
[8] ZHANG S S, LIU X Y, YU W D. Evaluation and model of woven fabric color[J]. Advanced Materials Research, 2013,2176:195-199.
[9] 赵章意. 微纳结构的生色理论及其在纤维上的应用研究[D]. 上海:东华大学, 2015: 11-13.
ZHAO Zhangyi. Research on the mechanism of structural colors with micro-nano structures and its application on fibers[D]. Shanghai:Donghua University, 2015: 11-13.
[10] HUANG Zhongjia, SHI Xinying, WANG Guang, et al. Antireflective design of Si-based photovoltaics via biomimicking structures on black butterfly scales[J]. Solar Energy, 2020,204(1):738-747.
doi: 10.1016/j.solener.2020.05.031
[11] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019,40(3):133-138.
DU Feifei, LI Xiaohui, ZHANG Siyan. Evaluation of thermal protection performance of honeycomb sandwich Structure fabric for fireproof clothing[J]. Journal of Textile Research, 2019,40(3):133-138.
[12] 楚鑫鑫, 肖红, 范杰. 织物凉感等级的主客观评价及确定[J]. 纺织学报, 2019,40(2):105-113.
CHU Xinxin, XIAO Hong, FAN Jie. Using fuzzy comprehensive evaluation method to classify fabrics for coolness level[J]. Journal of Textile Research, 2019,40(2):105-113.
[1] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[2] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[3] 王婷, 顾冰菲. 基于图像的人体颈肩部三维模型构建[J]. 纺织学报, 2021, 42(01): 125-132.
[4] 李新彤, 高哲, 顾洪阳, 丛洪莲. 针织西服面料的挺括风格研究[J]. 纺织学报, 2020, 41(11): 53-58.
[5] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[6] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[7] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[8] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[9] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[10] 王旭, 储长流, 倪庆清, 刘新华. 运用MAXScript语言的单层机织物结构三维建模[J]. 纺织学报, 2019, 40(01): 159-165.
[11] 沈奕君 张婷婷 柯莹 王宏付. 三维参数化技术在构建现代服装新形态中的应用[J]. 纺织学报, 2018, 39(12): 118-123.
[12] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[13] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[14] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[15] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!