纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 38-45.doi: 10.13475/j.fzxb.20200804308
ZHANG Lin1, LI Zhicheng1, ZHENG Qinyuan1, DONG Jun2, ZHANG Yin3,4()
摘要:
为实现特定方向应变的检测,拓展柔性应变传感器的适用范围,利用磁场辅助静电纺丝技术制备平行排布的聚偏氟乙烯(PVDF)纳米纤维薄膜,并组装成各向异性柔性压电传感器。探究了纺丝参数对纤维薄膜形貌的影响,借助拉曼光谱仪对其化学结构进行表征;对传感器的应变响应性进行测试,并验证其应用于输尿管蠕动检测的可行性。结果表明:纺丝电压为11.5 kV,纺丝距离为13 cm,推注速率为5 mL/h条件下制备的PVDF纳米纤维具有均一的形貌和取向性,且纳米纤维膜为β晶型结构;柔性各向异性应变传感器对于沿PVDF纳米纤维垂直方向的应变,能够产生显著的电压响应信号,而对沿PVDF纳米纤维平行方向的应变不敏感,显示出良好的各向异性应变检测能力。
中图分类号:
[1] | 李雪萍, 杨晓锋, 卿新林. 一种柔性电容传感器的压力传感特性及其机理研究[J]. 传感技术学报, 2019,32(8):1189-1193. |
LI Xueping, YANG Xiaofeng, QING Xinlin. Pressure sensing characteristics and mechanism of a flexible capacitance sensor[J]. Journal of Sensing Technology, 2019,32(8):1189-1193. | |
[2] | ZHANG Limei, HE Yuan, CHENG Sibo, et al. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation[J]. Journal of Transduction Technology, 2019,15(21):1804651. |
[3] |
JIAN Muqiang, WANG Chunya, WANG Qi, et al. Advanced carbon materials for flexible and wearable sensors[J]. Science China Materials, 2017,60(11):1026-1062.
doi: 10.1007/s40843-017-9077-x |
[4] |
BOSSU Julie, ECKHART Rene, CZIBULA Chiara, et al. Fine cellulosic materials produced from chemical pulp: the combined effect of morphology and rate of addition on paper properties[J]. Nanomaterials, 2019,9(3):321.
doi: 10.3390/nano9030321 |
[5] |
NAKAMOTO Hiroyuki, OOTAKA Hideo, TADA Mitsunori, et al. Stretchable strain sensor with anisotropy and application for joint angle measurement[J]. IEEE Sensors Journal, 2016,16(10):3572-3579.
doi: 10.1109/JSEN.2016.2535489 |
[6] |
ZENG Zhihui, SHAHABADI Seyed Ismail Seyed, CHE Boyang, et al. Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites[J]. Nanoscale, 2017,9(44):17396-17404.
doi: 10.1039/c7nr05106a pmid: 29099142 |
[7] |
CHEN Sheng, SONG Yijia, DING Dayong, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers[J]. Advanced Functional Materials, 2018,28(42):1802547.
doi: 10.1002/adfm.201802547 |
[8] |
ZHAO Wei, LUO Jin, SHAN Shiyao, et al. Nanoparticle-structured highly sensitive and anisotropic gauge sensors[J]. Small, 2015,11(35):4509-4516.
doi: 10.1002/smll.v11.35 |
[9] |
KIM Kyun Kyu, HONG Sukjoon, CHO Hyun Min, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks[J]. Nano Letters, 2015,15(8):5240-5247.
doi: 10.1021/acs.nanolett.5b01505 pmid: 26150011 |
[10] |
VIRY Lucie, LEVI Alessandro, TOTARO Massimo, et al. Flexible three-axial force sensor for soft and highly sensitive a.pngicial touch[J]. Advanced Materials, 2014,26(17):2659-2664.
doi: 10.1002/adma.v26.17 |
[11] |
WANG Xiaomei, SUN Fazhe, YIN Guangchao, et al. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review[J]. Sensors, 2018,18(2):330.
doi: 10.3390/s18020330 |
[12] |
JAYASEELAN D, BIJI P. Finite element analysis of in-situ alignment of nanoparticles in polymeric nanofibers using magnetic field assisted electrospinning[J]. Materials Research Express, 2015,2(9):095014.
doi: 10.1088/2053-1591/2/9/095014 |
[13] |
LIU Yaqing, ZHANG Xinping, XIA Younan, et al. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers[J]. Advanced Materials, 2010,22(22):2454-2457.
doi: 10.1002/adma.200903870 |
[14] |
MEI Linyu, HAN Rui, FU Yizheng, et al. Solvent selection for polyacrylonitrile using molecular dynamic simulation and the effect of process parameters of magnetic-field-assisted electrospinning on fiber alignment[J]. High Performance Polymers, 2015,27(4):439-448.
doi: 10.1177/0954008314555244 |
[15] | 代坤, 孔威威, 展鹏飞, 等. 石墨烯/TPU/PDMS 导电复合材料的拉伸敏感性能研究[J]. 郑州大学学报 (工学版), 2019 ( 2):72-76. |
DAI Kun, KONG Weiwei, ZHAN Pengfei, et al. Tensile sensitivity of graphene/TPU/PDMS conductive composites[J]. Journal of Zhengzhou University (Engineering Science), 2019 ( 2):72-76. | |
[16] | PARK Suk Hee, LEE Han Bit, YEON Si Mo, et al. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates[J]. ACS Applied Materials & Interfaces, 2016,8(37):24773-24778. |
[1] | 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114. |
[2] | 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/ 聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83. |
[3] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[4] | 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22. |
[5] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/ 聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[6] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[7] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[8] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[9] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[10] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[11] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[12] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
[13] | 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117. |
[14] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[15] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
|