纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 38-45.doi: 10.13475/j.fzxb.20200804308

• 纤维材料 • 上一篇    下一篇

基于静电纺丝的柔性各向异性应变传感器的制备及其性能

张林1, 李至诚1, 郑钦元1, 董隽2, 章寅3,4()   

  1. 1.东南大学 吴健雄学院, 江苏 南京 211189
    2.南京医科大学附属儿童医院 泌尿外科, 江苏 南京 210008
    3.东南大学 机械工程学院, 江苏 南京 211189
    4.东南大学 江苏省微纳生物医疗器械设计与制造重点实验室, 江苏 南京 211189
  • 收稿日期:2020-08-10 修回日期:2021-01-15 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 章寅
  • 作者简介:张林(1999—),男。主要研究方向为纳米纤维膜基柔性传感器。
  • 基金资助:
    江苏省自然科学基金项目(BK20180400);江苏省微纳生物医疗器械设计与制造重点实验室自主研究课题资助项目(ZD202104)

Preparation and performance of flexible and anisotropic strain sensor based on electrospinning

ZHANG Lin1, LI Zhicheng1, ZHENG Qinyuan1, DONG Jun2, ZHANG Yin3,4()   

  1. 1. Chien-Shiung WU College, Southeast University, Nanjing, Jiangsu 211189, China
    2. Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
    3. School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189, China
    4. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, Jiangsu 211189, China
  • Received:2020-08-10 Revised:2021-01-15 Online:2021-05-15 Published:2021-05-20
  • Contact: ZHANG Yin

摘要:

为实现特定方向应变的检测,拓展柔性应变传感器的适用范围,利用磁场辅助静电纺丝技术制备平行排布的聚偏氟乙烯(PVDF)纳米纤维薄膜,并组装成各向异性柔性压电传感器。探究了纺丝参数对纤维薄膜形貌的影响,借助拉曼光谱仪对其化学结构进行表征;对传感器的应变响应性进行测试,并验证其应用于输尿管蠕动检测的可行性。结果表明:纺丝电压为11.5 kV,纺丝距离为13 cm,推注速率为5 mL/h条件下制备的PVDF纳米纤维具有均一的形貌和取向性,且纳米纤维膜为β晶型结构;柔性各向异性应变传感器对于沿PVDF纳米纤维垂直方向的应变,能够产生显著的电压响应信号,而对沿PVDF纳米纤维平行方向的应变不敏感,显示出良好的各向异性应变检测能力。

关键词: 聚偏氟乙烯, 柔性传感器, 静电纺丝, 各向异性, 纳米纤维, 输尿管蠕动检测

Abstract:

In order to detect the strain in a specific direction, aligned polyvinylidene fluoride (PVDF) nanofiber mats were fabricated via magnetic electrospinning and packaged in soft materials to prepare flexible and anisotropic strain sensors. The effects of electrospinning parameters on the morphology of nanofibers were studied. Raman spectroscopy was used to characterize the crystal form in PVDF nanofibers. The performances of flexible strain sensors and the feasibility of applying the sensor in monitoring ureteral peristalsis were tested. The experimental results show that PVDF nanofibers fabricated by an 11.5 kV voltage under 10 cm eletrospinning distance and 5 mL/h injection rate present uniform morphology and best alignment. The β phase is in the predominant crystal form in the PVDF nanofiber. Bending test shows that the sensor generates an obvious response signal for the bending perpendicular to the PVDF nanofiber, while the sensor is insensitive for the bending in parallel to the PVDF nanofiber. The work shows that the sensor performs good anisotropic detection sensitivity to strain.

Key words: polyvinylidene fluoride, flexible sensor, electrospinning, anisotropy, nanofiber, detection of ureteral peristalsis

中图分类号: 

  • TQ340.64

图1

静电纺丝示意图"

图2

柔性传感器结构示意图与实物图"

图3

杂乱和平行分布的PVDF纳米纤维 (×1 000)"

图4

不同纺丝电压制备的纳米纤维光学显微镜照片(×1 000)"

图5

不同纺丝距离制备的纳米纤维光学显微镜照片(×1 000)"

图6

不同推注速度制备的纳米纤维光学显微镜照片(×1 000)"

图7

传统柔性传感器应变响应测试结果"

图8

柔性各向异性传感器应变响应测试"

图9

输尿管蠕动检测系统示意图与集成柔性传感器的肾造瘘管实物图"

图10

集成柔性传感器的肾造瘘管性能检测"

图11

PVDF粉末、杂乱PVDF纤维和平行PVDF纤维的拉曼光谱图"

[1] 李雪萍, 杨晓锋, 卿新林. 一种柔性电容传感器的压力传感特性及其机理研究[J]. 传感技术学报, 2019,32(8):1189-1193.
LI Xueping, YANG Xiaofeng, QING Xinlin. Pressure sensing characteristics and mechanism of a flexible capacitance sensor[J]. Journal of Sensing Technology, 2019,32(8):1189-1193.
[2] ZHANG Limei, HE Yuan, CHENG Sibo, et al. Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation[J]. Journal of Transduction Technology, 2019,15(21):1804651.
[3] JIAN Muqiang, WANG Chunya, WANG Qi, et al. Advanced carbon materials for flexible and wearable sensors[J]. Science China Materials, 2017,60(11):1026-1062.
doi: 10.1007/s40843-017-9077-x
[4] BOSSU Julie, ECKHART Rene, CZIBULA Chiara, et al. Fine cellulosic materials produced from chemical pulp: the combined effect of morphology and rate of addition on paper properties[J]. Nanomaterials, 2019,9(3):321.
doi: 10.3390/nano9030321
[5] NAKAMOTO Hiroyuki, OOTAKA Hideo, TADA Mitsunori, et al. Stretchable strain sensor with anisotropy and application for joint angle measurement[J]. IEEE Sensors Journal, 2016,16(10):3572-3579.
doi: 10.1109/JSEN.2016.2535489
[6] ZENG Zhihui, SHAHABADI Seyed Ismail Seyed, CHE Boyang, et al. Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites[J]. Nanoscale, 2017,9(44):17396-17404.
doi: 10.1039/c7nr05106a pmid: 29099142
[7] CHEN Sheng, SONG Yijia, DING Dayong, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers[J]. Advanced Functional Materials, 2018,28(42):1802547.
doi: 10.1002/adfm.201802547
[8] ZHAO Wei, LUO Jin, SHAN Shiyao, et al. Nanoparticle-structured highly sensitive and anisotropic gauge sensors[J]. Small, 2015,11(35):4509-4516.
doi: 10.1002/smll.v11.35
[9] KIM Kyun Kyu, HONG Sukjoon, CHO Hyun Min, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks[J]. Nano Letters, 2015,15(8):5240-5247.
doi: 10.1021/acs.nanolett.5b01505 pmid: 26150011
[10] VIRY Lucie, LEVI Alessandro, TOTARO Massimo, et al. Flexible three-axial force sensor for soft and highly sensitive a.pngicial touch[J]. Advanced Materials, 2014,26(17):2659-2664.
doi: 10.1002/adma.v26.17
[11] WANG Xiaomei, SUN Fazhe, YIN Guangchao, et al. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: a review[J]. Sensors, 2018,18(2):330.
doi: 10.3390/s18020330
[12] JAYASEELAN D, BIJI P. Finite element analysis of in-situ alignment of nanoparticles in polymeric nanofibers using magnetic field assisted electrospinning[J]. Materials Research Express, 2015,2(9):095014.
doi: 10.1088/2053-1591/2/9/095014
[13] LIU Yaqing, ZHANG Xinping, XIA Younan, et al. Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers[J]. Advanced Materials, 2010,22(22):2454-2457.
doi: 10.1002/adma.200903870
[14] MEI Linyu, HAN Rui, FU Yizheng, et al. Solvent selection for polyacrylonitrile using molecular dynamic simulation and the effect of process parameters of magnetic-field-assisted electrospinning on fiber alignment[J]. High Performance Polymers, 2015,27(4):439-448.
doi: 10.1177/0954008314555244
[15] 代坤, 孔威威, 展鹏飞, 等. 石墨烯/TPU/PDMS 导电复合材料的拉伸敏感性能研究[J]. 郑州大学学报 (工学版), 2019 ( 2):72-76.
DAI Kun, KONG Weiwei, ZHAN Pengfei, et al. Tensile sensitivity of graphene/TPU/PDMS conductive composites[J]. Journal of Zhengzhou University (Engineering Science), 2019 ( 2):72-76.
[16] PARK Suk Hee, LEE Han Bit, YEON Si Mo, et al. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates[J]. ACS Applied Materials & Interfaces, 2016,8(37):24773-24778.
[1] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[2] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/ 聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[3] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[4] 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22.
[5] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/ 聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[6] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[7] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[8] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[9] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[10] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[11] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[12] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[13] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[14] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[15] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!