纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 129-134.doi: 10.13475/j.fzxb.20200805106

• 染整与化学品 • 上一篇    下一篇

高中空生物质活性碳纤维制备及其对亚甲基蓝的吸附性能

程绿竹1, 王宗乾1(), 王邓峰2, 申佳锟1, 李长龙1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
  • 收稿日期:2020-08-10 修回日期:2020-11-09 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 王宗乾
  • 作者简介:程绿竹(1996—),女,硕士生。主要研究方向为生态染整技术与功能纺织品。
  • 基金资助:
    安徽省重点研究与开发计划项目(202004a06020055);安徽省重点研究与开发计划项目(201903a05020028);安徽省学术和技术带头人及后备人选学术科研资助项目(2020H218);芜湖市科技计划项目(2020yf51);安徽省高校学科(专业)中青年拔尖人才学术资助项目(gxbjZD2020075)

Preparation of highly hollow biomass-based activated carbon fiber and its adsorption property to methylene blue

CHENG Lüzhu1, WANG Zongqian1(), WANG Dengfeng2, SHEN Jiakun1, LI Changlong1   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-08-10 Revised:2020-11-09 Online:2021-02-15 Published:2021-02-23
  • Contact: WANG Zongqian

摘要:

为提高活性碳纤维对有色废水的吸附效率,以牛角瓜纤维为前驱体,采用磷酸活化、高温炭化工艺制备了具有高中空结构的活性碳纤维。采用扫描电镜/能谱仪、红外光谱仪等表征其微观形貌及化学结构,分析了所制备活性碳纤维对水溶液中亚甲基蓝的吸附性能与吸附机制。结果表明:牛角瓜活性碳纤维的平均中空度大于92%,具有粗糙表面和发达介孔结构,比表面积和平均孔径分别为1 244.812 m 2/g和3.744 nm;活性碳纤维表面富含O、P元素,构成了活性表面;亚甲基蓝溶液(100 mg/L)的饱和吸附量为198.840 mg/g,该吸附满足准二级动力学方程,同时符合Freundlich模型,以多层吸附为主。

关键词: 生物质活性碳纤维, 牛角瓜纤维, 亚甲基蓝, 吸附, 高中空结构, 废水处理

Abstract:

In order to improve the adsorption efficiency of activated carbon fiber to colored wastewater, the activated carbon fibers with highly hollow structures were prepared, using the calotropis gigantea fiber as the precursor, by phosphoric acid activation and high temperature carbonization. The morphology, chemistry and pore structures of the calotropis gigantean activated carbon fiber were characterized systematically by scanning electron microscopy-energy dispersive spectrometer, Fourier transform infrared spectrocopy methods. Meanwhile, the adsorption properties and mechanism of carbon fibers to methylene blue were analyzed. The results show that the average hollow degree of calotropis gigantea activated carbon fiber is more than 92%, and the fiber also exhibits a rough surface and develops mesoporous structures with the specific surface area and average pore diameter of 1 244.812 m 2/g and 3.744 nm, respectively. Moreover, the surface of carbon fiber is rich in elements O and P, which constitute the active surface of carbon fiber. The saturated adsorption capacity of the carbon fiber to methylene blue aqueous solution with initial mass concentration of 100 mg/L can reach 198.840 mg/g. The adsorption process to methylene blue follows the pseudo-second-order kinetic equation. The adsorption to methylene blue conforms to the Freundlich model, which is mainly multilayer adsorption.

Key words: biomass-based activated carbon fiber, calotropis gigantea fiber, methylene blue, adsorption, highly hollow structure, wastewater treatment

中图分类号: 

  • TQ424.1

图1

牛角瓜及其活性碳纤维微观形貌"

图2

活性碳纤维表面元素分布"

图3

牛角瓜纤维及其活性碳纤维的红外光谱图"

图4

牛角瓜活性碳纤维的N2吸附/解析曲线及孔径分布"

图5

亚甲基蓝的吸附速率曲线"

表1

亚甲基蓝吸附曲线拟合动力学参数"

准一级动力学方程拟合 准二级动力学方程拟合
Qe/
(mg·g-1)
K1/
min-1
R12 Qe/
(mg·g-1)
K2/
min-1
R22
194.376 0.129 0.992 200.024 0.001 4 0.999

图6

亚甲基蓝的吸附等温线"

表2

吸附模型拟合参数"

Langmuir Freundlich
Qmax/
(mg·g-1)
KL R2 nF KF R2
362.738 0.195 0.418 9.581 198.916 0.932
[1] TAVANGR T, JALALI K, SHAHMIRZADI M A A, et al. Toward real textile wastewater treatment:membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation nanofiltration process[J]. Separation and Purification Technology, 2019,216:115-125.
[2] SUHADOLNIK L, POHAR A, NOVAK U, et al. Continuous photocatalytic, electrocatalytic andphoto-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: batch, microreactor and scaled-up operation[J]. Journal of Industrial and Engineering Chemistry, 2019,72:178-188.
[3] PLAKAS K V, TAXINTRI A, KARABELAS A J. Enhanced photo-catalytic performance of activated carbon fibers for water treatment[J]. Water, 2019,11(9):1794.
[4] LI W, MU B, YANG Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology[J]. Bioresource Technology, 2019,277:157-170.
pmid: 30638884
[5] HINA K, ZOU H, QIAN W, et al. Preparation and performance comparison of cellulose-based activated carbon fibers[J]. Cellulose, 2018,25(1):607-617.
[6] WANG K, SONG Y, YAN R, et al. High capacitive performance of hollow activated carbon fibers derived from willow catkins[J]. Applied Surface Science, 2017,394:569-577.
[7] WANG D, WANG Z, ZHENG X, et al. Activated carbon fiber derived from the seed hair fibers of Metaplexis japonica: novel efficient adsorbent for methylene blue[J]. Industrial Crops and Products, 2020,148:112319.
[8] 王邓峰, 王宗乾, 应丽丽, 等. 萝藦绒活性碳纤维的制备及其对亚甲基蓝的吸附性能[J]. 精细化工, 2020,37(4):800-807.
WANG Dengfeng, WANG Zongqian, YING Lili, et al. Preparation of activated carbon fiber from nodding euphorbia and its adsorption property to methylene blue[J]. Fine Chemical Engineering, 2020,37(4):800-807.
[9] 罗艳, 江慧, 汪军. 牛角瓜纤维混纺纱的开发[J]. 棉纺织技术, 2016,44(4):56-58.
LUO Yan, JIANG Hui, WANG Jun. Development of calotropis gigantea fiber blended yarn[J]. Cotton Textile Technology, 2016,44(4):56-58.
[10] ZHENG Y, CAO E, TU L, et al. A comparative study for oil-absorbing performance of octadecyl trichlorosilane treated Calotropis gigantea fiber and kapok fiber[J]. Cellulose, 2017,24(2):989-1000.
doi: 10.1007/s10570-016-1155-z
[11] CAO E, DUAN W, YI L, et al. Poly(m-phenylenediamine) functionalized Calotropis gigantea fiber for coupled adsorption reduction for Cr (VI)[J]. Journal of Molecular Liquids, 2017,240:225-232.
[12] DUAN W, LI M, XIAO W, et al. Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized Calotropis gigantea fiber[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,574:178-187.
[13] 张泽, 徐卫军, 康宏亮, 等. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019,40(12):152-161.
ZHANG Ze, XU Weijun, KANG Hongliang, et al. Considerations on preparation technology of high performance polyacrylonitrile based carbon fiber[J]. Journal of Textile Research, 2019,40(12):152-161.
[14] 李树锋, 程博闻, 罗永莎, 等. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019,40(10):1-6.
LI Shufeng, CHENG Bowen, LUO Yongsha, et al. Preparation and properties of polyacrylonitrile-based active hollow carbon nanofibers[J]. Journal of Textile Research, 2019,40(10):1-6.
[15] WANG Z, WANG D, WAND M, et al. Metaplexis japonica seed hair fiber: a member of natural hollow fibers and itscharacterization[J]. Textile Research Journal, 2019,89(21), 4363-4372.
[16] DU Y, CHEN H, XU X, et al. Surface modification of biomass derived toluene adsorbent: hierarchically porous characterization and heteroatom doped effect[J]. Microporous and Mesoporous Materials, 2020,293:109831.
[17] LIANG Q, LIU Y, CHEN M, et al. Optimized preparation of activated carbon from coconut shell and municipal sludge[J]. Materials Chemistry and Physics, 2020,241:122327.
[18] CHANG M Y, JUANG R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay[J]. Journal of Colloid and Interface Science, 2004,278(1):18-25.
pmid: 15313633
[19] 徐春霞, 降帅, 韩阜益, 等. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019,40(10):20-25.
XU Chunxia, JIANG Shuai, HAN Fuyi, et al. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue[J]. Journal of Textile Research, 2019,40(10):20-25.
[20] 蒋煜峰, 温红, 张前, 等. 环丙沙星在黄土中的吸附机制及影响因素[J]. 中国环境科学, 2019,39(10):4262-4269.
JIANG Yufeng, WEN Hong, ZHANG Qian, et al. Adsorption mechanism and influencing fators of ciprofloxacin in loess[J]. China Environmental Science, 2019,39(10):4262-4269.
[1] 刘立东, 李新荣, 刘汉邦, 李丹丹. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(02): 185-192.
[2] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[3] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[4] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[5] 刘汉邦, 李新荣, 刘立东. 服装面料自动抓取转移方法的研究进展[J]. 纺织学报, 2021, 42(01): 190-196.
[6] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[7] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[8] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[9] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[10] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[11] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[12] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[13] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[14] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[15] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!