纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 71-76.doi: 10.13475/j.fzxb.20200805206
所属专题: 纳米纤维制备及应用
成悦1, 安琪1, 李大伟1,2, 付译鋆1,2(), 张伟1,2, 张瑜1,2
CHENG Yue1, AN Qi1, LI Dawei1,2, FU Yijun1,2(), ZHANG Wei1,2, ZHANG Yu1,2
摘要:
为提高聚偏氟乙烯(PVDF)的压电性能,以PVDF和正硅酸乙酯(TEOS)为原料,N,N-二甲基甲酰胺(DMF)和丙酮为混合溶剂,利用原位复合溶胶-凝胶法和高压静电纺丝技术制备纳米SiO2原位掺杂PVDF复合纳米纤维膜,并分析纳米纤维膜的表面微观形貌、化学结构、力学性能以及压电性能等。结果表明:复合纳米纤维膜的面密度与厚度随TEOS质量的增加而增加;静电纺丝使PVDF中部分α相转变为β相,纯PVDF纳米纤维膜的β相含量是PVDF粉末的1.54倍,为(31.42±0.62)%;且原位掺杂SiO2后β相含量进一步提高,拉伸强力与输出电压均呈先增大后降低的趋势,当TEOS质量为1.643 g时PVDF纳米纤维膜β相含量最高为(42.59±0.62)%,原位掺杂PVDF纳米纤维膜拉伸强力最大为(8.03±0.19) N,输出电压最高为(2.33±0.13) V。
中图分类号:
[1] | LI Jie, ZHAO Chunmao, XIA Kai, et al. Enhanced piezoelectric output of the PVDF-TrFE/ZnO flexible piezoelectric nanogenerator by surface modification[J]. Applied Surface Science, 2019,463(1):626-634. |
[2] |
LEE H, ZHANG S, BAR-COHEN Y, et al. High temperature, high power piezoelectric composite transducers[J]. Sensors, 2014,14(8):14526-14552.
doi: 10.3390/s140814526 pmid: 25111242 |
[3] | DAGDEVIREN C, JOE P, TUZMAN O L, et al. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation[J]. Extreme Mechanics Letters, 2016,9:269-281. |
[4] | XIN Yi, ZHU Jianfeng, SUN Hongshuai, et al. A brief review on piezoelectric PVDF nanofibers prepared by electrospinning[J]. Ferroelectrics, 2018,526(1):140-151. |
[5] | DEUTZ D B, MASCARENHAS N T, SCHELEN J B J, et al. Flexible piezoelectric touch sensor by alignment of lead-free alkaline niobate microcubes in PDMS[J]. Advanced Functional Materials, 2017,27(24):169-170. |
[6] |
XIE M, ZHANG Y, KRANY M J, et al. Flexible and active self-powered pressure, shear sensors based on freeze casting ceramic-polymer composites[J]. Energy & Environmental Science, 2018,11(10):2919-2927.
doi: 10.1039/c8ee01551a pmid: 30713583 |
[7] | PAIK H, CHOI Y Y, HONG S, et al. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films[J]. Scientific Reports, 2015,5(1):4-5. |
[8] |
BHAVANASI Venkateswarlu, KUMAR Vipin, PARIDA Kaushik, et al. Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide[J]. ACS Applied Materials & Interfaces, 2016,8(1):521-529.
doi: 10.1021/acsami.5b09502 pmid: 26693844 |
[9] | HABIBUR R M, YAQOOB U, MUHAMMAD S, et al. The effect of RGO on dielectric and energy harvesting properties of P(VDF-TrFE) matrix by optimizing electroactive β phase without traditional polling process[J]. Materials Chemistry and Physics, 2018,215:46-55. |
[10] |
PEREIRA F, CHAN A, VALLÉ K, et al. Design of interpenetrated networks of mesostructured hybrid silica and nonconductive poly(vinylidene fluoride)-cohexafluoropropylene (PVDF-HFP) polymer for proton exchange membrane fuel cell applications[J]. Chem Asian J, 2011,6(5):1217-1224.
doi: 10.1002/asia.201000784 pmid: 21360682 |
[11] | PONNAIAH A, RENGAPILLAI S, KARUPPIAH D, et al. High capacity prismatic type layered electrode with anionic redox activity as an efficient cathode material and PVDF/SiO2 composite membrane for a sodium ion battery[J]. Polymers, 2020,12(3):662. |
[12] | 李哲. 溶胶-凝胶法制备纳米ZnO的实验研究[D]. 重庆: 重庆大学, 2008: 13-17. |
LI Zhe. Experimental study on nanometer zinc oxide prepared by sol-gel[D]. Chongqing: Chongqing University, 2008: 13-17. | |
[13] | 吴倩倩, 李珂, 杨立双, 等. PVDF/SiO2复合纳米纤维膜的制备及性能研究[J]. 南通大学学报(自然科学版), 2019,18(4):83-88. |
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of PVDF/SiO2 composite nanofiber membranes[J]. Journal of Nantong University (Natural Science Edition), 2019,18(4):83-88. | |
[14] | CAI Xiaomei, LEI Tingping, SUN Daoheng, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR[J]. RSC Advances, 2017,7(25):15382-15389. |
[15] | 吴倩倩, 倪瑞燕, 安琪, 等. PVDF/PAN微电流伤口敷料的制备及其性能[J]. 纺织导报, 2018(11):75-78. |
WU Qianqian, NI Ruiyan, AN Qi, et al. Preparation and properties of PVDF/PAN micro-current wound dressings[J]. China Textile Leader, 2018(11):75-78. | |
[16] | SINHA N, GOEL S, JOSEPH A J, et al. Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator[J]. Ceramics International, 2018,44(7):8582-8590. |
[17] | WAN A B, HWAL S J, SO-YUN K, et al. Smart sensor systems for wearable electronic devices[J]. Polymers, 2017,9(8):303-343. |
[18] | 李静静, 卢辉, 蒋洁, 等. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018,39(2):1-6. |
LI Jingjing, LU Hui, JIANG Jie, et al. High voltage electrostatic spinning flexible zinc oxide/polyvinylidene fluoride composite fiber film[J]. Journal of Textile Research, 2018,39(2):1-6.
doi: 10.1177/004051756903900101 |
|
[19] | 梁爽, 郑茂梅, 孙平, 等. 聚偏氟乙烯结晶结构及其β相制备方法的研究[J]. 压电与声光, 2013,35(5):719-723. |
LIANG Shuang, ZHENG Maomei, SUN Ping, et al. Researches on crystal structure and preparation methods of β-phase polyvinylidene fluoride[J]. Piezoelectrics & Acoustooptics, 2013,35(5):719-723. | |
[20] |
TIWARI V, SRIVASTAVA G. Enhanced dielectric and piezoelectric properties of 0-3 PZT/PVDF composites[J]. Ceramics International, 2016,41(3):8008-8013.
doi: 10.1016/j.ceramint.2015.02.148 |
[21] | 尹春生. 纳米SiO2与锌铝合金复合改性的聚氨酯/环氧树脂防腐涂层[D]. 南京: 南京航空航天大学, 2018: 54-59. |
YIN Chunsheng. Nano-SiO2 and Zn-Al alloy multiply modified polyurethane/epoxy antiseptic coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 54-59. | |
[22] |
XIA Yang, LI Jiaojiao, WANG Hongjie, et al. Synjournal and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2018,23(3):519-527.
doi: 10.1007/s10008-018-4161-2 |
[23] | 徐润平. 二氧化硅原位交联耐溶剂复合纳滤膜的制备及其性能研究[D]. 杭州: 浙江理工大学, 2019: 20-23. |
XU Runping. Preparation and characterization of silica in-situ crosslinking solvent-resistant composite nanofiltration membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 20-23. | |
[24] |
KONG Fangyun, CHANG Mengzhou, WANG Zhenqing. Investigation of the effect of nanosilica on mechanical, structural, and fracture toughness of polyvinylidene fluoride films[J]. Materials Research Express, 2019,6(10):105369-105369.
doi: 10.1088/2053-1591/ab413b |
[25] | 魏延超, 洪晓斌, 许静, 等. 锂硫电池用LiPFSD/PVDF/SiO2复合膜的研究[J]. 电源技术, 2019,43(1):16-19. |
WEI Yanchao, HONG Xiaobin, XU Jing, et al. Research on LiPFSD/PVDF/SiO2 composite membranes used in lithium-sulfur batteries[J]. Chinese Journal of Power Sources, 2019,43(1):16-19. | |
[26] | 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020,41(1):26-31. |
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings.[J] Journal of Textile Research, 2020,41(1):26-31. | |
[27] | WEI Fayun, CHENG Yue, WU Qianqian, et al. Preparation and properties of electrospun polyvinylidene fluoride (PVDF)/polyurethane (PU) composite nanofiber membranes[J]. Journal of Donghua University (English Edition), 2019,36(5):445-450. |
[1] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[2] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[3] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
[4] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[5] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[6] | 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15. |
[7] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[8] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[9] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[10] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[11] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[12] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[13] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[14] | 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115. |
[15] | 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020, 41(10): 178-187. |
|