纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 51-56.doi: 10.13475/j.fzxb.20200805806

• 纤维材料 • 上一篇    下一篇

静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能

代阳1,2(), 杨楠楠1, 肖渊1,2   

  1. 1. 西安工程大学 机电工程学院, 陕西 西安 710048
    2. 西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2020-08-12 修回日期:2021-01-29 出版日期:2021-06-15 发布日期:2021-06-25
  • 作者简介:代阳(1988—),男,讲师,博士。主要研究方向为检测自动化、新型传感器和声学测量等。E-mail: daiyang@xpu.edu.cn
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2019055);西安工程大学博士启动基金项目(BS201803);陕西省自然科学基础研究计划项目(2020JQ-826);西安市现代智能纺织装备重点实验室项目(2019220614SYS021CG043)

Preparation and properties of resistive flexible humidity sensors using electrospun carbon nanotubes

DAI Yang1,2(), YANG Nannan1, XIAO Yuan1,2   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2020-08-12 Revised:2021-01-29 Published:2021-06-15 Online:2021-06-25

摘要:

为制备灵敏度高的柔性湿度传感器,以更适合可穿戴使用场景,提出以聚对苯二甲酸乙二醇酯(PET)为柔性衬底,在其上制作叉指电极,然后以聚乙烯吡咯烷酮(PVP)和多壁碳纳米管(MWCNTs)为原料制备溶液,通过静电纺丝技术将MWCNTs/PVP沉积在柔性PET衬底上制成柔性湿度传感器。借助扫描电子显微镜对薄膜的微观结构进行表征和分析,并通过设计的实验装置对传感器的线性度、响应/恢复时间、重复性和稳定性进行测试。结果表明:该柔性湿度传感器的输出电阻值与相对湿度呈现良好的线性关系,线性相关系数为0.97,可检测的相对湿度范围为40%~90%,响应时间为20 s,恢复时间为5 s,在75%相对湿度下经40次重复测量,传感器表现出良好的重复性和稳定性。

关键词: 静电纺丝, 碳纳米管, 柔性可穿戴, 湿度传感器, 柔性衬底

Abstract:

In order to prepare a flexible humidity sensor with high sensitivity and more suitable for wearable use scenes, polyethylene terephthalate (PET) was used as a flexible substrate for making interdigital electrodes, and polyvinylpyrrolidone (PVP) and multi-walled carbon nanotubes (MWCNTs) were employed as the raw materials to prepare the spinning solution, and MWCNTs/PVP was deposited on a flexible PET substrate by electrospinning technology to make a flexible humidity sensor. The microstructure of the membrane was characterized and analyzed via the use of scanning electron microscopy, and the linearity, response/recovery time, repeatability and stability of the sensor were evaluated using the designed experimental devices. The results show that the output resistance of the flexible humidity sensor has a good linear relationship with the relative humidity, and the correlation coefficient is 0.97. The detectable relative humidity range is 40%-90%, the response time is 20 s, and the recovery time is 5 s. After 40 repeated measurements under 75% relative humidity, the sensor shows good repeatability and stability.

Key words: electrospinning, carbon nanotube, flexible wearable, humidity sensor, flexible substrate

中图分类号: 

  • TB32

图1

带叉指电极的PET衬底图"

图2

柔性湿度传感器"

图3

柔性湿度传感器的示意图"

图4

湿度测试系统原理图"

图5

基于PET衬底的MWCNT吸附机制示意图"

图6

MWCNTs的简化的等效电路图"

图7

柔性湿度传感器表面及截面扫描电镜照片"

图8

电阻值与相对湿度关系图"

图9

不同相对湿度下的传感响应曲线"

图10

氯化钠饱和盐溶液环境中电信号响应曲线"

[1] 范艳苹, 胡克勤, 陶仁中, 等. 智能纺织服装的发展现状与进展[J]. 染整技术, 2017, 39(7):1-6.
FAN Yanping, HU Keqin, TAO Renzhong, et al. Development status and progress of smart textile and clothing[J]. Textile Dyeing and Finishing Journal, 2017, 39(7):1-6.
[2] 张亦可, 贾凡, 桂澄, 等. 聚偏氟乙烯/FeCl 3复合纤维膜柔性传感器的制备及其性能 [J]. 纺织学报, 2020, 41(12):13-20.
ZHANG Yike, JIA Fan, GUI Cheng, et al. Preparation and performance of polyvinylidene fluoride/FeCl 3 composite fiber membrane flexible sensor [J]. Journal of Textile Research, 2020, 41(12):13-20.
[3] 孙倩, 阚燕, 李晓强, 等. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11):27-33.
SUN Qian, KAN Yan, LI Xiaoqiang, et al. Preparation and performance of polyacrylonitrile/cobalt chloride nanofiber colorimetric humidity sensor[J]. Journal of Textile Research, 2020, 41(11):27-33.
[4] ZHU P H, LIU Y, FANF Z Q, et al. Flexible and highly sensitive humidity sensor based on cellulose nanofibers and carbon nanotube composite film[J]. Langmuir, 2019, 35(14):4834-4842.
doi: 10.1021/acs.langmuir.8b04259
[5] TAKEI Y, MATSUMOTO K, SHIMOYAMA I. Wearable sweat monitoring sensor based on ionic liquid gel[C]// 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). Shanghai:IEEE, 2016:924-925.
[6] KIM J, LEE M, SHIM H J, et al. Stretchable siliconnanorib bon electronics for skin prosthesis[J]. Nature Communications, 2014, 5(5):5747.
doi: 10.1038/ncomms6747
[7] BAE Y M, LEE Y H, KIM H S, et al. Polyimide-polyurethane/urea block copolymers for highly sensitive humidity sensor with low hysteresis[J]. Journal of Applied Polymer Science, 2017, 134:44973.
[8] NIARCHOS G, DUBOURG G, AFROUDAKIS G, et al. Humidity sensing properties of paper substrates and their passivation with ZnO nanoparticles for sensor applications[J]. Sensors, 2017, 17(3):379-385.
doi: 10.3390/s17020379
[9] 段建瑞, 李斌, 李帅臻. 常用新型柔性传感器的研究进展[J]. 传感器与微系统, 2015, 34(11):1-4,11.
DUAN Jianrui, LI Bin, LI Shuaizhen. Research progress of commonly used new flexible sensors[J]. Transducer and Microsystem Technologies, 2015, 34(11):1-4,11.
[10] ZHANG D Z, TONG J, XIA B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly[J]. Sensors & Actuators B Chemical, 2014, 197(7):66-72.
[11] 章丹, 黄见秋, 王立峰. 基于LCP衬底的柔性湿度传感器研究[J]. 传感技术学报, 2017, 30(10):1478-1482.
ZHANG Dan, HUANG Jianqiu, WANG Lifeng. Research on flexible humidity sensor based on LCP substrate(English)[J]. Chinese Journal of Sensor and Actuators, 2017, 30(10):1478-1482.
[12] DUBOURG G, SEGKOS A, KATONA J, et al. Fabrication and characterization of flexible and miniaturized humidity sensors using screen-printed TiO2 nanoparticles as sensitive layer [J]. Sensors, 2017, 17(8):1854.
doi: 10.3390/s17081854
[13] 王贵欣, 裴志彬, 叶长辉. 自供能柔性氧化石墨烯湿度传感器的喷墨印刷制备及性能研究[J]. 无机材料学报, 2019, 34(1):114-120.
WANG Guixin, PEI Zhibin, YE Changhui. Study on inkjet printing preparation and performance of self-powered flexible graphene oxide humidity sensor[J]. Journal of Inorganic Materials, 2019, 34(1):114-120.
doi: 10.15541/jim20180164
[14] 钱巍, 李敏, 余厚林, 等. 柔性还原氧化石墨烯多功能传感器制备及性能研究[J]. 浙江理工大学学报(自然科学版), 2018, 39(4):423-428.
QIAN Wei, LI Min, YU Houlin, et al. Preparation and performance of flexible reduced graphene oxide multifunctional sensor[J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2018, 39(4):423-428.
[15] 李法利, 李晟斌, 曹晋玮, 等. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1):1059-1068.
LI Fali, LI Shengbin, CAO Jinwei, et al. Elastic sensitive materials and sensor components[J]. Materials Reports, 2020, 34(1):1059-1068.
[16] 郑富中, 吴英, 张杰, 等. 基于单壁碳纳米管的压阻式柔性传感器[J]. 传感技术学报, 2019, 32(7):1009-1015.
ZHENG Fuzhong, WU Ying, ZHANG Jie, et al. Piezoresistive flexible sensor based on single-walled carbon nanotubes[J]. Chinese Journal of Sensor and Actuators, 2019, 32(7):1009-1015.
[17] 尚旭, 景希玮, 徐健, 等. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6):883-890.
SHANG Xu, JING Xiwei, XU Jian, et al. The effect of polyvinylpyrrolidone with different molecular weights on the dispersion properties of multi-walled carbon nanotubes[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(6):883-890.
[18] 姚伟. 有机挥发性气体传感器的制备及特性研究[D]. 成都: 电子科技大学, 2014:5-6.
YAO Wei. Preparation and characteristics of organic volatile gas sensors[D]. Chengdu: University of Electronic Science and Technology of China, 2014:5-6.
[19] 李承臻. 柔性湿度传感器的制备与湿敏性能研究[D]. 成都: 电子科技大学, 2019:9.
LI Chengzhen. Research on the preparation and humidity sensitivity of a flexible humidity sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2019:9.
[1] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[2] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[3] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[4] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[5] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[6] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
[7] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[8] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[9] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[10] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[11] 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126.
[12] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[13] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[14] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[15] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!