纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 62-68.doi: 10.13475/j.fzxb.20200807708

• 纤维材料 • 上一篇    下一篇

轻薄型取向碳纳米纤维膜的应变传感性能

闫涛1,2, 潘志娟1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-08-18 修回日期:2021-03-30 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 潘志娟
  • 作者简介:闫涛(1990—),男,博士。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    江苏省重点研发计划项目(BE2019045);江苏省博士后科研资助计划项目(2020Z251)

Strain sensing performance for thin and aligned carbon nanofiber membrane

YAN Tao1,2, PAN Zhijuan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-08-18 Revised:2021-03-30 Published:2021-07-15 Online:2021-07-22
  • Contact: PAN Zhijuan

摘要:

为实现对人体运动及生理信息的监测,利用静电纺丝法制备轻薄型取向碳纳米纤维膜(CNFM),并以此开发柔性应变传感器。重点分析了碳纳米纤维膜的结构及性能,讨论了CNFM的厚度、宽度及碳纳米纤维(CNF)的取向对传感性能的影响。结果表明:聚丙烯腈/石墨烯复合纳米纤维的取向度及CNFM的透光率可分别达到61.3%和48%;当牵伸方向平行于CNF的取向时,传感器的应变范围随CNF取向度的增加先减小后增大,随CNFM厚度及宽度的增加逐渐增加;当牵伸方向垂直于CNF的取向方向时,传感器的应变范围显著提高,但其敏感系数降低。该超薄透明型柔性应变传感器可贴附于皮肤表面,检测人体关节及心率、声带振动等运动与生理信息,也可应用于智能服装及微小形变监测等领域。

关键词: 静电纺, 碳纳米纤维膜, 柔性应变传感器, 传感性能, 智能可穿戴器件

Abstract:

Aiming for the monitoring of human body movement and physiological information, a thin and aligned carbon nanofiber membrane (CNFM) was prepared by using the electrospinning method, and a flexible strain sensor was developed. The structures and performances of nanofiber membranes were analyzed, and the influence of thickness and width of CNFM and the alignment of carbon nanofiber (CNF) on sensing performance was discussed. The results exhibit that the aligned degree of polyacrylonitrile/graphene composite nanofibers and the transmittance of CNFM could reach 61.3% and 48%, respectively. When the stretching direction was parallel to the aligned direction of CNF, the strain range of the sensor firstly decreases and then increases with the increase of the alignment of CNF, and gradually increases with the increase of the thickness and width of CNFM. When the stretching direction was perpendicular to the CNF orientation direction, the strain range of the sensor is significantly increased, but sensitivity is decreased. The ultra-thin transparent flexible strain sensor can be attached to the skin surface to detect the motion information caused by human joint movement, and physiological information such as pulse and vocal-cord vibration. It can also be applied in the fields of smart clothing and subtle deformation monitoring.

Key words: electrospinning, carbon nanofiber membrane, flexible strain sensor, sensing performance, smart wearable device

中图分类号: 

  • TP212.1

图1

传感器实物图"

图2

不同转速条件下PAN/石墨烯复合纳米纤维膜的扫描电镜照片"

图3

不同转速下PAN/石墨烯复合纳米纤维的直径及取向度"

图4

不同纺丝时间下CNFM的透光率"

图5

应变传感器的传感性能"

图6

不同条件下应变传感器的应变与相对电阻变化曲线"

图7

CNF取向方向垂直于牵伸方向时传感器的应变与相对电阻变化曲线"

图8

牵伸过程中不同应变下CNFM的结构变化"

图9

传感器的实际应用性能"

[1] YAN Tao, WANG Zhe, PAN Zhijuan. Flexible strain sensors fabricated using carbon-based nanomaterials: a review[J]. Current Opinion in Solid State & Materials Science, 2018, 22(6):213-228.
[2] ZHANG Mingchao, WANG Chunya, WANG Huimin, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials, 2017, 27(2):1604795.
doi: 10.1002/adfm.v27.2
[3] WANG Chunya, LI Xiang, GAO Enlai, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors[J]. Advanced Materials, 2016, 28(31):6640-6648.
doi: 10.1002/adma.201601572
[4] WANG Chunya, XIA Kailun, JIAN Muqiang, et al. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring[J]. Journal of Materials Chemistry C, 2017, 5(30):7604-7611.
doi: 10.1039/C7TC01962A
[5] JIANG Dawei, WANG Ying, LI Bin, et al. Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate[J]. Macromolecular Materials and Engineering, 2019, 304(7):1900074.
doi: 10.1002/mame.v304.7
[6] SANG Shengbo, LIU Lihua, JIAN Aoqun, et al. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles[J]. Nanotechnology, 2018, 29(25):255202.
doi: 10.1088/1361-6528/aabbba pmid: 29620014
[7] GONG Xinxin, FEI Guangtao, FU Wenbiao, et al. Flexible strain sensor with high performance based on PANI/PDMS films[J]. Organic Electronics, 2017, 47:51-56.
doi: 10.1016/j.orgel.2017.05.001
[8] INHWAN Kim, GILSOO Cho. Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion[J]. Smart Materials and Structures, 2018, 27(7):075006.
doi: 10.1088/1361-665X/aac0b2
[9] SHI Xinlei, WANG Huike, XIE Xueting, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture[J]. ACS Nano, 2019, 13(1):649-659.
doi: 10.1021/acsnano.8b07805 pmid: 30566329
[10] HUANG Jieyu, LI Dawei, ZHAO Min, et al. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection[J]. Advanced Electronic Materials, 2019, 5(6):1900241.
doi: 10.1002/aelm.v5.6
[11] CHEN Jianwen, ZHU Yutian, JIANG Wei, et al. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer[J]. Composites Science and Technology, 2020, 186:107938.
doi: 10.1016/j.compscitech.2019.107938
[12] YANG Heng, YAO Xuefeng, ZHENG Zhong, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology, 2018, 167:371-378.
doi: 10.1016/j.compscitech.2018.08.022
[13] YAN Tao, WANG Zhe, WANG Yiqi, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018, 143:214-223.
[14] YAN Tao, WANG Zhe, PAN Zhijuan. A highly sensitive strain sensor based on a carbonized polyacrylonitrile nanofiber woven fabric[J]. Journal of Materials Science, 2018, 53(16):11917-11931.
doi: 10.1007/s10853-018-2432-z
[15] DING Yichun, YANG Jack, TOLLE Charles R, et al. A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring[J]. RSC Advances, 2016, 6(82):79114-79120.
doi: 10.1039/C6RA16236C
[16] WANG Qi, JIAN Muqiang, WANG Chunya, et al. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin[J]. Advanced Functional Materials, 2017, 27(9):1605657.
doi: 10.1002/adfm.201605657
[17] YAN Tao, PAN Zhijuan. Structures and properties of polyacrylonitrile/graphene composite nanofiber yarns prepared by multi-needle electrospinning device with an auxiliary electrode[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(6):4255-4263.
doi: 10.1166/jnn.2018.15194 pmid: 29442771
[1] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[2] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[3] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[4] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[5] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[6] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[7] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[8] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[9] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[10] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[11] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[12] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[13] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[14] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[15] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!