纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 62-68.doi: 10.13475/j.fzxb.20200807708
摘要:
为实现对人体运动及生理信息的监测,利用静电纺丝法制备轻薄型取向碳纳米纤维膜(CNFM),并以此开发柔性应变传感器。重点分析了碳纳米纤维膜的结构及性能,讨论了CNFM的厚度、宽度及碳纳米纤维(CNF)的取向对传感性能的影响。结果表明:聚丙烯腈/石墨烯复合纳米纤维的取向度及CNFM的透光率可分别达到61.3%和48%;当牵伸方向平行于CNF的取向时,传感器的应变范围随CNF取向度的增加先减小后增大,随CNFM厚度及宽度的增加逐渐增加;当牵伸方向垂直于CNF的取向方向时,传感器的应变范围显著提高,但其敏感系数降低。该超薄透明型柔性应变传感器可贴附于皮肤表面,检测人体关节及心率、声带振动等运动与生理信息,也可应用于智能服装及微小形变监测等领域。
中图分类号:
[1] | YAN Tao, WANG Zhe, PAN Zhijuan. Flexible strain sensors fabricated using carbon-based nanomaterials: a review[J]. Current Opinion in Solid State & Materials Science, 2018, 22(6):213-228. |
[2] |
ZHANG Mingchao, WANG Chunya, WANG Huimin, et al. Carbonized cotton fabric for high-performance wearable strain sensors[J]. Advanced Functional Materials, 2017, 27(2):1604795.
doi: 10.1002/adfm.v27.2 |
[3] |
WANG Chunya, LI Xiang, GAO Enlai, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors[J]. Advanced Materials, 2016, 28(31):6640-6648.
doi: 10.1002/adma.201601572 |
[4] |
WANG Chunya, XIA Kailun, JIAN Muqiang, et al. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring[J]. Journal of Materials Chemistry C, 2017, 5(30):7604-7611.
doi: 10.1039/C7TC01962A |
[5] |
JIANG Dawei, WANG Ying, LI Bin, et al. Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate[J]. Macromolecular Materials and Engineering, 2019, 304(7):1900074.
doi: 10.1002/mame.v304.7 |
[6] |
SANG Shengbo, LIU Lihua, JIAN Aoqun, et al. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles[J]. Nanotechnology, 2018, 29(25):255202.
doi: 10.1088/1361-6528/aabbba pmid: 29620014 |
[7] |
GONG Xinxin, FEI Guangtao, FU Wenbiao, et al. Flexible strain sensor with high performance based on PANI/PDMS films[J]. Organic Electronics, 2017, 47:51-56.
doi: 10.1016/j.orgel.2017.05.001 |
[8] |
INHWAN Kim, GILSOO Cho. Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion[J]. Smart Materials and Structures, 2018, 27(7):075006.
doi: 10.1088/1361-665X/aac0b2 |
[9] |
SHI Xinlei, WANG Huike, XIE Xueting, et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture[J]. ACS Nano, 2019, 13(1):649-659.
doi: 10.1021/acsnano.8b07805 pmid: 30566329 |
[10] |
HUANG Jieyu, LI Dawei, ZHAO Min, et al. Highly sensitive and stretchable CNT-bridged AgNP strain sensor based on TPU electrospun membrane for human motion detection[J]. Advanced Electronic Materials, 2019, 5(6):1900241.
doi: 10.1002/aelm.v5.6 |
[11] |
CHEN Jianwen, ZHU Yutian, JIANG Wei, et al. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer[J]. Composites Science and Technology, 2020, 186:107938.
doi: 10.1016/j.compscitech.2019.107938 |
[12] |
YANG Heng, YAO Xuefeng, ZHENG Zhong, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology, 2018, 167:371-378.
doi: 10.1016/j.compscitech.2018.08.022 |
[13] | YAN Tao, WANG Zhe, WANG Yiqi, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018, 143:214-223. |
[14] |
YAN Tao, WANG Zhe, PAN Zhijuan. A highly sensitive strain sensor based on a carbonized polyacrylonitrile nanofiber woven fabric[J]. Journal of Materials Science, 2018, 53(16):11917-11931.
doi: 10.1007/s10853-018-2432-z |
[15] |
DING Yichun, YANG Jack, TOLLE Charles R, et al. A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring[J]. RSC Advances, 2016, 6(82):79114-79120.
doi: 10.1039/C6RA16236C |
[16] |
WANG Qi, JIAN Muqiang, WANG Chunya, et al. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin[J]. Advanced Functional Materials, 2017, 27(9):1605657.
doi: 10.1002/adfm.201605657 |
[17] |
YAN Tao, PAN Zhijuan. Structures and properties of polyacrylonitrile/graphene composite nanofiber yarns prepared by multi-needle electrospinning device with an auxiliary electrode[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(6):4255-4263.
doi: 10.1166/jnn.2018.15194 pmid: 29442771 |
[1] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[2] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[3] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[4] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[5] | 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119. |
[6] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[7] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[8] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[9] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[10] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[11] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[12] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[13] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[14] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[15] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
|