纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 54-61.doi: 10.13475/j.fzxb.20200808308

• 纤维材料 • 上一篇    下一篇

木质素/聚丙烯腈基碳纤维的制备及其表征

阳智1, 刘呈坤1(), 吴红2, 毛雪1   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.陕西省纺织科学研究院, 陕西 西安 710038
  • 收稿日期:2020-08-20 修回日期:2021-04-09 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 刘呈坤
  • 作者简介:阳智(1992—),男,硕士生。主要研究方向为静电纺纳米纤维的制备与应用。
  • 基金资助:
    国家自然科学基金项目(51503168);陕西省创新能力支撑计划-科技资源开放共享平台项目(2020PT-043);陕西省创新人才推进计划-青年科技新星项目(2017KJXX-23);山东省博士后创新项目专项资金资助项目(201504)

Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers

YANG Zhi1, LIU Chengkun1(), WU Hong2, MAO Xue1   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Shaanxi Textile Science Institute, Xi'an, Shaanxi 710038,China
  • Received:2020-08-20 Revised:2021-04-09 Published:2021-07-15 Online:2021-07-22
  • Contact: LIU Chengkun

摘要:

为实现木质素作为一种可再生、易降解的环保原材料在制备碳纤维领域的应用,通过静电纺丝、预氧化和炭化工艺制备了木质素/聚丙烯腈基碳纤维。借助旋转流变仪、电导率仪、扫描电子显微镜、傅里叶变换红外光谱仪、X射线光电子能谱仪和比表面积测试仪研究了木质素的添加对纺丝溶液的性质、预氧丝和碳纤维结构与性能的影响。结果表明:在保证溶液可纺性和纤维成纤性的基础上,木质素与聚丙烯腈的质量比可提高到90∶10,最大程度地实现了木质素的高值化利用;添加木质素后,预氧丝具有耐热稳定的梯形结构,制备的碳纤维比表面积从50.49增大到849.89 m2/g,在电池和超级电容器等能源领域具有重要的潜在应用价值。

关键词: 静电纺丝, 木质素, 聚丙烯腈, 预氧丝, 碳纤维

Abstract:

In order to use lignin as a renewable and degradable raw material in the preparation of carbon fiber, lignin/polyacrylonitrile (PAN) based carbon fiber was prepared by electrospinning, pre-oxidation and carbonization. The effect of lignin addition on the properties of spinning solution and structure and properties of preoxidized fiber and carbon fiber were studied by means of rotary rheometer, conductivity meter, scanning electron microscope, Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy and specific surface area tester.The results show that the mass ratio of lignin to PAN can be increased to 90∶10 on the basis of ensuring the solution spinnability and fiber-forming property, which maximizes the high-value utilization of lignin. The pre-oxidized fiber has a heat-resistant and stable trapezoidal structure after adding lignin. The specific surface area of carbon nanofiber increases from 50.49 to 849.89 m2/g, which has important potential application value in battery, supercapacitor and other energy fields.

Key words: electrospinning, lignin, polyacrylonitrile, pre-oxidized fiber, carbon fiber

中图分类号: 

  • TS102.6

图1

不同木质素与PAN质量比条件下制备的复合纤维膜的FE-SEM照片"

表1

不同DMSO和DMF体积比对应的溶液电导率和黏度"

DMSO和DMF体积比 电导率/(mS·cm-1) 黏度/(Pa·s)
100:0 0.32 0.878
70:30 0.39 1.309
60:40 0.47 2.294
50:50 0.58 2.634

图2

不同DMSO和DMF体积比条件下制备的复合纤维膜的FE-SEM照片"

图3

不同溶液质量分数条件下制备的复合纤维膜的FE-SEM照片"

图4

木质素/PAN复合纤维膜的DSC曲线"

图5

不同预氧化温度条件下预氧丝的DSC曲线"

表2

不同预氧化温度条件下预氧丝的DSC参数"

预氧化
温度/℃
放热起始
温度/℃
放热峰值
温度/℃
放热终止
温度/℃
放热量/
(J·g-1)
环化
度/%
240 262.9 332.9 411.3 4 276 48.8
260 275.3 339.1 404.3 3 511 57.9
280 284.7 351.3 420.1 2 769 83.5
300 297.6 375.7 441.0 1 341 83.9

图6

不同预氧化温度条件下预氧丝的FE-SEM照片"

图7

不同预氧化温度条件下预氧丝的红外光谱"

图8

PAN基碳纤维和木质素/PAN基碳纤维的FE-SEM照片"

图9

PAN基碳纤维和木质素/PAN基碳纤维的XRD谱图与Raman谱图"

图10

PAN基碳纤维和木质素/PAN基碳纤维的孔径分布与氮气吸附-脱附等温线"

[1] RAZA A, WANG J Q, YANG S, et al. Hierarchical porous carbon nanofibers via electrospinning[J]. Carbon Letters, 2014, 15(1):1-14.
doi: 10.5714/CL.2014.15.1.001
[2] SCHLEE P, HEROU S, JERVIS R, et al. Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density[J]. Chemical Science, 2019, 10(10):2980-2988.
doi: 10.1039/C8SC04936J
[3] 许丽洪. 电纺木质素/聚丙烯腈基碳纤维复合纳米材料及其储能特性研究[D]. 福州: 福建师范大学, 2015:11-12.
XU Lihong. Energy storage performance of composite nanomaterials derived from electrospun LN-/PAN-based carbon fibers[D]. Fuzhou: Fujian Normal University, 2015: 11-12.
[4] JAYAWICKRAMAGE R, BALKUS K J, FERRARIS J P, et al. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35):355402.
doi: 10.1088/1361-6528/ab2274
[5] KAZZAZ A E, FATEHI P. Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface[J]. Journal of Colloid and Interface Science, 2020, 561:231-243.
doi: 10.1016/j.jcis.2019.11.111
[6] ZHU J D, YAN C Y, ZHANG X, et al. A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors[J]. Progress in Energy and Combustion Science, 2020, 76:100788.
doi: 10.1016/j.pecs.2019.100788
[7] SCHLEE P, HOSSEINAEI O, BAKER D, et al. From waste to wealth: from kraft lignin to free-standing supercapacitors[J]. Carbon, 2019, 145:470-480.
doi: 10.1016/j.carbon.2019.01.035
[8] DAI Z, REN P G, AN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437:226937.
doi: 10.1016/j.jpowsour.2019.226937
[9] TAO L, HUANG Y B, ZHENG Y W, et al. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95:217-226.
doi: 10.1016/j.jtice.2018.07.005
[10] SONG M, TANG X H, XU J, et al. The formation of novel carbon/carbon composite by chemical vapor deposition: an efficient adsorbent for enhanced desulfurization performance[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118:34-41.
doi: 10.1016/j.jaap.2015.12.020
[11] 顾红星, 王浩静, 范立东, 等. 聚丙烯腈预氧丝预氧化程度表征分析[J]. 化工学报, 2015, 66(3):1228-1233.
GU Hongxing, WANG Haojing, FAN Lidong, et al. Evaluation and analysis of pre-oxidation extent of polyacrylonitrile fiber[J]. CIESC Journal, 2015, 66(3):1228-1233.
[12] MA A, LI C, DU W, et al. Study on biomass based nanofibers preparation by electrospinning[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9):7204-7210.
doi: 10.1166/jnn.2014.8976
[13] WANG X, ZHANG W, CHEN M Z, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12):1306.
doi: 10.3390/polym10121306
[14] 王成国, 朱波. 聚丙烯腈基碳纤维[M]. 北京: 中国科学出版社, 2011: 114-118.
WANG Chengguo, ZHU Bo. Polyacrylonitrile-based carbon fiber [M]. Beijing: China Science Press, 2011: 114-118.
[15] 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2017: 161-163.
HE Fu. Carbon fiber and graphite fiber [M]. Beijing: Chemical Industry Press, 2017: 161-163.
[16] DING R, WU H, THUNGA M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100:126-136.
doi: 10.1016/j.carbon.2015.12.078
[17] DAI Z, SHI X, LIU H, et al. High-strength lignin-based carbon fibers via a low-energy method[J]. RSC Advances, 2018, 8(3):1218-1224.
doi: 10.1039/C7RA10821D
[18] DALLMEYER I, LIN L T, LI Y, et al. Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning[J]. Macromolecular Materials and Engineering, 2014, 299(5):540-551.
doi: 10.1002/mame.v299.5
[19] OROUMEI A, FOX B, NAEBE M. Thermal and rheological characteristics of biobased carbon fiber precursor derived from low molecular weight organosolv lignin[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4):758-769.
[20] 蔡则田. 用Raman光谱研究碳纤维结构及其微观力学性能[D]. 上海: 东华大学, 2010: 4-9.
CAI Zetian. Stduies on the structure and micro-mechanical properties of carbon fiber by raman sepectrum[D]. Shanghai: Donghua University, 2010: 4-9.
[21] LAI C L, ZHOU Z P, ZHANG L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247:134-141.
doi: 10.1016/j.jpowsour.2013.08.082
[22] JAYAWICKRAMAGE R A P, FERRARIS J P. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes[J]. Nanotechnology, 2019, 30(15):155402.
doi: 10.1088/1361-6528/aafe95
[23] 王欢. 木质素碳/ZnO复合材料的制备及在光催化和超级电容器中的应用[D]. 广州: 华南理工大学, 2018: 133-134.
WANG Huan. Preparation of lignin-based carbon and ZnO composite and its application in photocatalysis and supercapacitor[D]. Guangzhou: South China University of Technology, 2018: 133-134.
[1] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[2] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[3] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[4] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[5] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[6] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[7] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[8] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[9] 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126.
[10] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[11] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[12] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[13] 陈君妍, 鞠敬鸽, 邓南平, 杨琪, 程博闻, 康卫民. 兔毛基中空碳纤维在锂硫电池中的应用[J]. 纺织学报, 2021, 42(03): 56-63.
[14] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[15] 刘丽宾, 吕汪洋, 陈文兴. 棉针织物漂白中铜配合物催化降解木质素及其模型化合物[J]. 纺织学报, 2021, 42(03): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!