纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 85-90.doi: 10.13475/j.fzxb.20200901406

• 纺织工程 • 上一篇    下一篇

牵伸对纱条条干不匀影响的模拟研究

贺雅勤1, 毕雪蓉1, 钱希茜1, 阮钧2, 郁崇文1,3()   

  1. 1. 东华大学 纺织学院, 上海 201620
    2. 东华大学 机械工程学院, 上海 201620
    3. 东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2020-09-04 修回日期:2021-02-20 出版日期:2021-06-15 发布日期:2021-06-28
  • 通讯作者: 郁崇文
  • 作者简介:贺雅勤(1994—),女,硕士生。主要研究方向为纺纱基础理论。
  • 基金资助:
    国家自然科学基金项目(51773034)

Simulation study on effect of drafting on sliver unevenness

HE Yaqin1, BI Xuerong1, QIAN Xixi1, RUAN Jun2, YU Chongwen1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    3. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-09-04 Revised:2021-02-20 Published:2021-06-15 Online:2021-06-28
  • Contact: YU Chongwen

摘要:

牵伸时纤维运动引起其排列变化是影响牵伸后纱条条干不匀的关键。为探究纤维变速点分布对牵伸后纱条条干不匀的影响,通过计算机模拟了实际纱条中的纤维排列(实际纱条),分别对理想纱条和实际纱条牵伸过程中的纤维运动进行了模拟,计算了在不同变速点分布下牵伸后纱条的条干不匀,并进行实验验证。结果表明:与理想纱条相比,实际纱条的条干不匀模拟值更接近实测值,且实际纱条能体现牵伸中变速点分布对牵伸后纱条条干不匀的影响,即变速点分布越分散,牵伸后纱条条干不匀越大;实际棉条模拟牵伸后的条干不匀值与实测值变化趋势一致,可用来预测牵伸后纱条的条干不匀。

关键词: 牵伸, 变速点分布, 纤维头端, 纤维排列, 纱条条干不匀

Abstract:

In the research of sliver unevenness after drafting, the change of fiber arrangement is the key to the problem, which is caused by fiber movement. In order to explore the influence of the accelerated point distribution on the unevenness of sliver after drafting, the fiber arrangement in the measured sliver was simulated, referred to as actual sliver. The fiber movement during the drafting process in the ideal sliver and the actual sliver was simulated, respectively. The unevenness of the actual sliver after drafting with different accelerated point distribution were calculated, and experiments were carried out. The results showed that compared with the ideal sliver, the actual sliver can better reflect the influence of the accelerated point distribution on the unevenness of the sliver after drafting, and an increase in the accelerated point variance is found to associate to the increase in the sliver unevenness. The unevenness of the actual cotton sliver after simulated drafting is roughly consistent with the trend of the measured value.

Key words: drafting, accelerated point distribution, fiber end, fiber arrangement, sliver unevenness

中图分类号: 

  • TS101.1

表1

原料规格"

类型 纤维平均
长度/mm
纤维平均
线密度/dtex
平均条干线
密度/ktex
平均条干
不匀率/%
生条 23.6 1.37 4.65 6.35
半熟条 23.6 1.37 5.00 6.65
熟条 25.8 1.45 4.42 5.14
不匀生条 25.2 1.74 3.90 11.50

图1

生成纤维头端数的方法示意图"

图2

纱条条干不匀的计算方法示意图"

图3

截面内纤维根数对模拟条干不匀及运算时间的影响"

图4

纱条条干不匀的实测和模拟值"

图5

牵伸区内的变速点分布"

表2

不同长度示踪纤维变速点分布的拟合结果"

类型 45 mm
(R1)
38 mm
(R2)
30 mm
(R3)
25 mm
(R4)
20 mm
(R5)
15 mm
(R6)
10 mm
(R7)
5 mm
(R8)
μ 1.08 2.47 3.78 5.49 9.72 11.26 12.60 16.13
σ 0.945 1.762 1.868 2.799 3.789 3.899 3.727 5.895

图6

变速点方差对牵伸后纱条条干不匀的影响"

表3

并条后棉条条干不匀的实测和模拟值"

类型 实测不
匀率/%
模拟不匀率/%
实测变速点分布 等变速点
生条喂入 10.30 4.55 4.29
9.86 3.85 3.60
10.20 2.88 2.56
熟条喂入 6.20 2.78 2.49
5.90 2.75 2.46
6.37 3.39 3.16
不匀条喂入 15.41 7.19 6.90
10.94 3.98 3.69
11.88 5.98 5.83
10.38 5.19 5.04
[1] MARTINDALE J G. A new method of measuring the irregularity of yarns with some observations on the origin of irregularities in worsted slivers and yarns[J]. Journal of the Textile Institute, 1945(36):35-47.
[2] RAO S J. The mathematical model for the ideal sliver and its applications to the theory of roller drafting[J]. Journal of the Textile Institute, 1961(52):570-600.
[3] BROWN G H, LY G N. Statistics for the number of fiber ends in a segment of a random assembly of aligned fibers[J]. Textile Research Journal, 1985, 55 (4):206-210.
doi: 10.1177/004051758505500402
[4] ZEIDMAN M, SUH M W, BATRA S K. A new perspective on yarn unevenness: components and determinants of general unevenness[J]. Textile Research Journal, 1990, 49(1):28-34.
doi: 10.1177/004051757904900105
[5] 张弘强, 胡远波, 姜展, 等. 生条中纤维左头端的分布[J]. 纺织学报, 2016, 37(5):28-31.
ZHANG Hongqiang, HU Yuanbo, JIANG Zhan, et al. Distribution of fiber left ends in card sliver[J]. Journal of Textile Research, 2016, 37(5):28-31.
[6] 严广松, 苏玉恒. 理想纱条的纤维排列与随机过程分析[J]. 河南工程学院学报(自然科学版), 2014, 26(1):1-5.
YAN Guangsong, SU Yuheng. The alignment of fibers in ideal sliver and its analysis by stochastic process[J]. Journal of Henan Institute of Engineering (Natural Science Edition), 2014, 26(1):1-5.
[7] JIANG Zhan, HU Yuanbo, KUANG Xueqin, et al. Simulation on fiber random arrangement in the yarn[J]. The Journal of The Textile Institute, 2014.DOI:10.1080/00405000.2014.891685.
doi: 10.1080/00405000.2014.891685
[8] 郁崇文. 纺纱学[M]. 中国纺织出版社, 2014:112-115.
YU Chongwen. Spinning science[M]. Beijing: China Textile & Apparel Press, 2014:112-115.
[9] MUPFUDZE KUDAKWASHE D, CAO Qiaoli, SHEN Yuanying, et al. Fiber motion and the accelerated point distribution in roller drafting[J]. Textile Research Journal, 2019. DOI:10.1177/0040517518767150.
doi: 10.1177/0040517518767150
[10] SUN Na, JIANG Zhan, YU Chongwen. Modeling roller drafting based on fiber arrangement in the sliver[J]. The Journal of the Textile Institute, 2018. DOI:10.1080/0040500.2018.1427909.
doi: 10.1080/0040500.2018.1427909
[11] 严广松, 路允芳, 郁崇文. 牵伸区浮游纤维变速点分布的理论研究[J]. 纺织学报, 2007, 28(9):23-26.
YAN Guangsong, LU Yunfang, YU Chongwen. Theoretical study on the distribution of accelerated points of floating fibers in the drafting zone[J]. Journal of Textile Research, 2007, 28(9):23-26.
[12] 丁祥, 章华军, 杨道明, 等. 精梳棉涤纶混纺套染纱的生产实践[J]. 棉纺织技术, 2020(8):59-62.
DING Xiang, ZHANG Huajun, YANG Daoming, et al. Production practice of combed cotton polymer blended over dyeing yarn.[J]. Cotton Textile Technology, 2020(8):59-62.
[13] 刘金辉, 李维周, 佘崇舰. 圣麻Coolplus混纺纱生产实践[J]. 棉纺织技术, 2008(5):40-42.
LIU Jinhui, LI Weizhou, SHE Chongjian. Practice of producing shengma coolplus blended yarn[J]. Cotton Textile Technology, 2008(5):40-42.
[14] 朱秋凉. 赛络纺棉氨纶包芯纱的生产及应用[J]. 棉纺织技术, 2007(12):34-36.
ZHU Qiuliang. Production and application of siro spinning cotton spandex core-spun yarn.[J] Cotton Textile Technology, 2007(12):34-36.
[1] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[2] 阮丽, 孙荣基, 刘基宏, 李永贵. 特殊外观结构赛络花式纱的后区牵伸及成纱结构分析[J]. 纺织学报, 2021, 42(03): 77-81.
[3] 苏玉恒, 孔繁荣, 严广松. 纱条中纤维排列状态与纱条不匀的关系[J]. 纺织学报, 2020, 41(01): 45-49.
[4] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[5] 魏艳红, 谢春萍, 刘新金, 苏旭中, 殷高伟. 基于大直径软胶辊的细纱牵伸机制及其应用效果[J]. 纺织学报, 2019, 40(10): 62-67.
[6] 郭明瑞, 李沛赢, 孙丰鑫, 高卫东. 双色变换段彩纱成纱原理及其共混段长度与强度的影响因素[J]. 纺织学报, 2019, 40(05): 30-35.
[7] 王瑞洁 李龙 秦彩霞 . 采用滑溜牵伸的低比例山羊绒混纺纺纱实践[J]. 纺织学报, 2018, 39(06): 24-28.
[8] 姚勇波 颜志勇 李喆 易洪雷 张玉梅 王华平. 牵伸倍率分配对纤维素/丝素蛋白共混纤维形态结构的影响[J]. 纺织学报, 2018, 39(06): 13-18.
[9] 敖利民 及二丽 莫晓旋 李向阳 李春钢. 空气网络包覆弹力纱中氨纶丝实际预牵伸倍数测试[J]. 纺织学报, 2017, 38(11): 36-40.
[10] 王青 王贯超. FA322B并条机牵伸机构主牵伸区部分参数的优化设计[J]. 纺织学报, 2017, 38(08): 139-143.
[11] 罗婷 纪峰 程隆棣 吉宜军 邓万胜. 双S曲线软牵伸纺纱技术[J]. 纺织学报, 2017, 38(07): 34-38.
[12] 高志娟 郁崇文. 并条机后区牵伸倍数的模拟设计[J]. 纺织学报, 2017, 38(04): 39-45.
[13] 张晓娟 徐伯俊 刘新金. 采用多项式拟合的细纱机双区牵伸与三区牵伸纤维分布对比[J]. 纺织学报, 2016, 37(4): 38-42.
[14] 代丽梅 谢春萍 刘新金 张洪. 莱赛尔纱超大牵伸纺纱工艺的优化[J]. 纺织学报, 2016, 37(3): 25-30.
[15] 麻宝龙 汪军. 运用离散事件仿真的罗拉牵伸模型[J]. 纺织学报, 2016, 37(2): 125-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!