纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 79-83.doi: 10.13475/j.fzxb.20200902105

• 纺织工程 • 上一篇    下一篇

棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备

肖渊1,2(), 李红英1, 李倩1, 张威1, 杨鹏程1   

  1. 1.西安工程大学 机电工程学院, 陕西 西安 710048
    2.西安市现代智能纺织装备重点实验室, 陕西 西安 710048
  • 收稿日期:2020-09-09 修回日期:2021-02-08 出版日期:2021-05-15 发布日期:2021-05-20
  • 作者简介:肖渊(1975—),男,教授,博士。研究方向微滴喷射打印、可穿戴智能纺织品。E-mail: xiaoyuanjidian@xpu.edu.cn
  • 基金资助:
    西安市现代智能纺织装备重点实验室资助项目(2019220614SYS021CG043);西安工程大学研究生创新基金项目(chx2019088)

Preparation of flexible sensor with composite dielectric layer of cotton fabric/polydimethylsiloxane

XIAO Yuan1,2(), LI Hongying1, LI Qian1, ZHANG Wei1, YANG Pengcheng1   

  1. 1. College of Mechanical and Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Xi'an Key Laboratory of Modern Intelligent Textile Equipment, Xi'an, Shaanxi 710048, China
  • Received:2020-09-09 Revised:2021-02-08 Online:2021-05-15 Published:2021-05-20

摘要:

针对织物基柔性压力传感器制备过程中存在工艺复杂、成本高等问题,提出在平纹棉织物上下表面贴附等宽叉指形铜箔,并采用聚二甲基硅氧烷(PDMS)封装织物及铜箔电极,制得织物基电容式柔性压力传感器的方法,对传感器阵列单元截面微观形貌进行观察并对传感器性能进行测试。结果表明, 传感器具有PDMS包覆织物纤维特殊微结构复合介电层;在0~0.75、0.75~125及125~580 kPa范围内,灵敏度分别为8.66×10-3、0.94×10-3和0.43×10-3 kPa-1,传感器最大可检测限达580 kPa,最大迟滞约5.5%,具有良好的重复性及稳定性;对其柔性及触觉分析发现,该传感器可清晰识别并反馈弯折不同角度及手指间歇触压的过程。

关键词: 智能纺织品, 织物基电容传感器, 柔性传感器, 聚二甲基硅氧烷, 复合微结构介电层

Abstract:

In order to solve the existing problems such as complex process and high cost in the preparation of fabric-based flexible pressure sensors, a new method was proposed for preparing a fabric-based capacitive flexible pressure sensor by affixing equal width interdigital copper foil on both sides of the plain woven cotton fabric and encapsulating the assembly using polydimethylsiloxane (PDMS). The microscopic morphology of the cross-section of the sensor array unit was observed, and the sensor performances were tested. Experiment results show that it has a special microstructure composite dielectric layer formed by PDMS coated fabric fibers, and its sensitivities are about 8.66×10-3, 0.94×10-3 and 0.43×10-3 kPa-1 under pressures of 0-0.75, 0.75-125 and 125-580 kPa respectively. The maximum detectable limit of the sensor can reach 580 kPa, whose maximum hysteresis is about 5.5%, and the sensor demonstrates good repeatability and stability. The flexibility and tactile testing show that it can clearly recognize and feedback the process of bending with different angles and intermittent finger pressing.

Key words: smart textiles, fabric-based capacitive sensor, flexible sensor, polydimethylsiloxane, dielectric layer of composite microstructure

中图分类号: 

  • TP212

图1

传感器工作原理示意图"

图2

传感器制备工艺流程图"

图3

织物/PDMS复合结构传感器截面微观形貌SEM照片"

图4

传感器灵敏度测试"

图5

传感器迟滞性"

图6

传感器重复性"

图7

传感器稳定性"

图8

传感器应用测试结果"

[1] LING Y, AN T, YAP L W, et al. Disruptive, soft wearable sensors[J]. Advanced Materials, 2020,32(18):1904664.
doi: 10.1002/adma.v32.18
[2] PERSSON N K, MARTINEZ J G, ZHONG Y, et al. Actuating textiles: next generation of smart textiles[J]. Advanced Materials and Technologies, 2018,3(10):1700397.
doi: 10.1002/admt.v3.10
[3] YU J G, LONG T Y, JOO C Y, et al. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability[J]. Advanced Materials, 2020,32(15):9635-9648.
[4] 肖渊, 黄亚超, 蒋龙, 等. 喷射打印和化学沉积成形微细电路中微滴可控喷射研究[J]. 中国机械工程, 2015,26(13):1806-1810.
XIAO Yuan, HUANG Yachao, JIANG Long, et al. Research on micro-droplet controllable jetting in fine circuit formation using jet printing and chemical deposition[J]. China Mechanical Engineering, 2015,26(13):1806-1810.
[5] 肖渊, 尹博, 李岚馨, 等. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019,40(5):78-83.
XIAO Yuan, YIN Bo, LI Lanxin, et al. Influence of process conditions on silver conductive lines by micro-droplet jet printing solution reaction[J]. Journal of Textile Research, 2019,40(5):78-83.
[6] 罗毅辉, 彭倩倩, 朱宇超, 等. 喷印柔性压力传感器试验研究[J]. 机械工程学报, 2019,55(11):90-97.
LUO Yihui PENG Qianqian ZHU Yuchao, et al. Experimental study of flexible pressure sensor via direct writing[J]. Journal of Mechanical Engineering, 2019,55(11):90-97.
[7] JULIA P, KORY S, TRICIA B C, et al. A comparative analysis of capacitive-based flexible PDMS pressure sensors[J]. Sensors and Actuators A-physical, 2019,285:421-436.
[8] CHEN Z F, WANG Z, LI X M, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. ACS Nano, 2017,11(5):4507-4513.
doi: 10.1021/acsnano.6b08027
[9] ZHANG Q, WANG Y L, XIA Y, et al. Textile-only capacitive sensors for facile fabric integration without compromise of wearability[J]. Advanced Materials and Technologies, 2019,4(10):1900485.
doi: 10.1002/admt.v4.10
[10] YANG Wei, RUSSEL T R, YI Li, et al. Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries[J]. Sensors and Actuators A: Physical, 2016,247:239-246.
doi: 10.1016/j.sna.2016.06.005
[11] MA K, DU X Y, ZHANG Y W, et al. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors[J]. Journal of Materials Chemistry C, 2017,5(36):9398-9404.
doi: 10.1039/C7TC02847D
[12] CHOI C, LEE J M, KIM S H, et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors[J]. Nano Letters, 2016,16(12):7677-7684.
doi: 10.1021/acs.nanolett.6b03739
[13] 孙婉, 缪旭红, 王晓雷, 等. 基于经编间隔织物的压力电容传感器特性[J]. 纺织学报, 2019,40(2):94-99.
SUN Wan, MIAO Xuhong, WANG Xiaolei, et al. Characteristics of capacitive pressure sensor based on warp-knitted spacer fabric[J]. Journal of Textile Research, 2019,40(2):94-99.
[14] SABEREH G, RAMIN K, HEYDAR A S, et al. Fabrication and characterization of a flexible capacitive sensor on PET fabric[J]. International Journal of Clothing Science and Technology, 2018,30(5):687-697.
doi: 10.1108/IJCST-08-2017-0125
[15] OZGUR A, ASLI A, JOSHUA G, et al. A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer[J]. Advanced Materials and Technologies, 2018,3(1):1700237.
doi: 10.1002/admt.201700237
[1] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[2] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[3] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[4] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[5] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[6] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[7] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[8] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[9] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[10] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[11] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[12] 陈慧, 王玺, 丁辛, 李乔. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020, 41(03): 118-123.
[13] 吴荣辉, 马丽芸, 张一帆, 刘向阳, 于伟东. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019, 40(12): 45-49.
[14] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[15] 韦玲俐, 邹沁杉, 王璐, 罗菁, 夏鑫. 无氟自清洁功能型羊毛/羊绒混纺织物的研发[J]. 纺织学报, 2019, 40(09): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!