纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 57-62.doi: 10.13475/j.fzxb.20200902306
摘要:
为解决目前锂离子电池负极材料固有的体积膨胀问题,使用室温下呈液态的镓锡(GaSn)合金作为锂离子电池负极材料,通过静电纺丝法将液态GaSn合金束缚在纳米纤维内部以及纳米纤维的网络状结构中间,并组装成锂离子电池,对其结构和性能进行表征与分析。结果表明:液态GaSn合金可均匀地分散在碳纳米纤维中,同时GaSn合金由于超声空化作用形成液态小液滴,在循环过程中由于流动性和高表面张力逐渐聚集成大液滴而被固定在纳米纤维网络结构中间,有利于电极材料自愈性更好发挥,可有效修复电池在循环过程中所产生的裂纹;100圈充放电循环测试后,电池的容量保持率达94.8%。
中图分类号:
[1] | WU Y P, HUANG L, HUANG X K, et al. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life[J]. Energy & Environmental Science, 2017, 10(8):1854-1861. |
[2] |
CHIECHI R, WEISS E, DICKEY M, et al. Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monola-yers[J]. Angewandte Chemie International Edition, 2007, 47(1):142-144.
doi: 10.1002/(ISSN)1521-3773 |
[3] |
LIU T, SEN P, KIM C J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices[J]. Journal of Microelectromechanical Systems, 2012, 21(2):443-450.
doi: 10.1109/JMEMS.2011.2174421 |
[4] | DICKEY, MICHAEL D. Emerging applications of liquid metals featuring surface oxides[J]. ACS Applied Materials & Interfaces, 2014, 6(21):18369-18379. |
[5] |
WANG Q, YU Y, LIU J. Preparations, characteristics and applications of the functional liquid metal mate-rials[J]. Advanced Engineering Materials, 2017, 20(5):1700781.
doi: 10.1002/adem.v20.5 |
[6] | 秦琴. 基于室温液态金属薄膜的纸基柔性导线研究[D]. 宁波: 宁波大学, 2017:9-27. |
QIN Qin. Research on Paper-based flexible conductive wires fabricated with room temperature liquid-metal films[D]. Ningbo: Ningbo University, 2017:9-27. | |
[7] | DESHPANDE R, CHENG Y T, VERBRUGGE M W, et al. Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle[J]. Journal of The Electrochemical Society, 2011, 158(6):718. |
[8] |
罗飞, 郑杰允, 褚赓, 等. 高容量金属镓薄膜和粉体作为锂离子电池负极材料的自修复行为研究[J]. 化学学报, 2015, 73(8):808-814.
doi: 10.6023/A15030151 |
LUO Fei, ZHENG Jieyun, CHU Geng, et al. Self-healing behavior of high capacity metal gallium thin film and powder as anode material for Li-ion battery[J]. Acta Chimica Sinica, 2015, 73(8):808-814. | |
[9] | 孟秀凤, 孙勇, 赵磊, 等. 功率超声在液态金属成形方面作用及应用[J]. 南方金属, 2007(4):5-7,11. |
MENG Xiufeng, SUN Yong, ZHAO Lei, et al. Principle and application of power ultrasonic treatment in molten metal shaping[J]. Southern Metals, 2007(4):5-7,11. | |
[10] |
HOHMAN J N, KIM M, WADSWORTH G A, et al. Directing substrate morphology via self-assembly: ligand-mediated scission of gallium-indium microspheres to the nanoscale[J]. Nano Letters, 2011, 11(12):5104.
doi: 10.1021/nl202728j |
[11] | 张配同, 刘宜伟, 郭强, 等. 超声法制备均匀分布的亚微米级镓铟锡合金液态金属微球[J]. 理化检验(物理分册), 2017, 53(10):701-706. |
ZHANG Peitong, LIU Yiwei, GUO Qiang, et al. Uniformly distributed sub-microsized galinstan liquid metal microspheres prepared by ultrasoic method[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2017, 53(10):701-706. | |
[12] | 薛海龙. 静电纺丝改性醋酸纤维素及其性能表征[D]. 长春: 吉林大学, 2017:25-38. |
XUE Hailong. Preparation and properties of modification of cellulose acetate via electrospinning[D]. Changchun: Jilin University, 2017:25-38. | |
[13] | PARK S, KIM T, OH S M. Electrochemical dilatometry study on Si-embedded carbon nanotube powder electrodes[J]. Electrochemical and Solid-State Letters, 2007, 10(6):142. |
[14] |
ZHANG S, YAO F, YANG L, et al. Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries[J]. Carbon, 2015, 93:143-150.
doi: 10.1016/j.carbon.2015.04.091 |
[15] |
WANG L, LIU J. Liquid metal folding patterns induced by electric capillary force[J]. Applied Physics Letters, 2016, 108(16):161602.
doi: 10.1063/1.4947440 |
[16] |
MARKVICKA E J, BARTLETT M D, HUANG X, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics[J]. Nature Materials, 2018, 17:618-624.
doi: 10.1038/s41563-018-0084-7 |
[17] |
HU L, WANG L, DING Y, et al. Manipulation of liquid metals on a graphite surface[J]. Advanced Materials, 2016, 28(41):9210-9217.
doi: 10.1002/adma.201601639 |
[1] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[2] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[3] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[4] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[5] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[6] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[7] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[8] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[9] | 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126. |
[10] | 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131. |
[11] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[12] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[13] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[14] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
[15] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
|