纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 49-56.doi: 10.13475/j.fzxb.20200904808

• 纤维材料 • 上一篇    下一篇

聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能

张亚茹1,2, 胡毅1,2(), 程钟灵1,2, 许仕林1,2   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
  • 收稿日期:2020-09-21 修回日期:2021-05-01 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 胡毅
  • 作者简介:张亚茹(1995—),女,硕士生。主要研究方向为碳纳米纤维的制备及储能应用。
  • 基金资助:
    浙江省自然科学基金项目(LY21E030023);浙江理工大学基本科研业务费专项资金资助项目(2020Y001)

Preparation and energy storage properties of polyacrylonitrile-based Si/C/carbon nanotube composite carbon nanofiber membrane

ZHANG Yaru1,2, HU Yi1,2(), CHENG Zhongling1,2, XU Shilin1,2   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education,Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-09-21 Revised:2021-05-01 Published:2021-08-15 Online:2021-08-24
  • Contact: HU Yi

摘要:

针对Si材料储能过程中体积膨胀的问题,首先采用静电纺丝技术制备聚丙烯腈(PAN)/Si /Fe复合纳米纤维(NFs)膜,然后经化学气相沉积法在复合NFs膜上生长碳纳米管(CNTs),最后经800 ℃炭化得到PAN基Si/C/CNTs复合碳纳米纤维(CNFs)膜。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪、热重分析仪等表征复合CNFs膜的结构与性能,并将其用于锂离子电池负极进行电化学性能测试。结果表明:用添加质量分数为15% 的FeSO4(占PAN)催化剂的纺丝液制备的复合CNFs膜具有独特毛毛虫结构,其可有效提升电池的电化学性能,具有2 067.9 mA·h/g的初始放电比容量,循环400圈后仍具有851.2 mA·h/g 的放电比容量,每圈的容量衰减率仅为 0.15%。

关键词: 静电纺丝, 化学气相沉积法, 碳纳米管, 复合碳纳米纤维, 储能性能

Abstract:

In order to overcome volume expansion in energy storage process of silicon materials, electrospinning technology was used to prepare polyacrylonitrile (PAN)/Si/Fe composite nano-fiber(NFs) membrane, which was deposited on the composite NFs by chemical vapor deposition method for growth of carbon nanotubes (CNTs). Carbonization took place afterwards at 800 ℃ to obtain PAN-based Si/C/CNTs composite carbon nanofiber(CNFs)membrane. The structure and properties of composite CNFs membrane were characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer and thermogravimetric analyzer. The fabricated membrane was used in the negative electrode of lithium ions battery, and the corresponding electrochemical performance test was carried out. The results show that with the catalyst of 15% FeSO4 (compared to PAN) in spinning solution, a unique caterpillar structure composite CNFs membrane appears which effectively improves the electrochemical performance of the battery. It has an initial specific discharge capacity of 2 067.9 mA·h/g, and it still maintains a specific discharge capacity of 851.2 mA·h/g after 400 cycles, with a capacity decay rate per cycle being only 0.15%.

Key words: electrospinning, chemical vapor deposition method, carbon nanotube, composite carbon nanofiber, energy storage performance

中图分类号: 

  • TQ340.64

图1

不同质量分数FeSO4制备的复合CNFs膜的扫描电镜照片"

图2

不同铁盐制备的复合CNFs膜扫描电镜照片"

图3

Si/C/CNT复合CNFs膜在高倍和低倍下的透射电镜照片"

图4

Si/C/CNTs复合CNFs膜的Raman光谱图"

图5

Si/C/CNTs复合CNFs膜的扫描电镜照片及表面元素分布照片"

图6

Si/C/CNTs复合CNFs膜XPS谱图"

图7

复合CNFs膜的氮气吸/脱附曲线和孔径分布图"

图8

Si/C/CNTs复合CNFs膜的热重曲线"

图9

Si/C/CNTs复合CNFs膜的X射线衍射曲线"

图10

复合CNFs膜负极锂离子电池电化学曲线"

[1] 李靓晗, 简现龙, 张森, 等. 柔性自支撑CNT/Si复合薄膜的制备及储能性能[J]. 化工学报, 2020, 71(6):2804-2810.
LI Lianghan, JIAN Xianlong, ZHANG Sen, et al. Preparation and energy storage performance of flexible and self-supporting CNT/Si composite film[J]. CIESC Journal, 2020, 71(6):2804-2810.
[2] 胡倩倩, 长世勇, 张灵志, 等. 一种分散在多孔碳上的碳包覆硅负极的制备及应用[J]. 新能源进展, 2020, 8(2):131-135.
HU Qianqian, CHANG Shiyong, ZHANG Lingzhi, et al. Preparation and application of a carbon-coated silicon anode dispersed on porous carbon[J]. New Energy Development, 2020, 8(2):131-135.
[3] LIN H, CHEN Y, JIANG B, et al. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries[J]. Dalton Transactions, 2020, 49(17):5669-5676.
doi: 10.1039/D0DT00566E
[4] 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2):569-582.
ZHOU Junhua, LUO Fei, CHU Geng, et al. Research progress of nano-silicon-carbon anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2):569-582.
[5] 肖钰, 梁晓杜, 廖丽霞, 等. 锂离子电池硅负极材料性能改进的研究进展[J]. 化工新型材料, 2020, 48(4):1-4.
XIAO Yu, LIANG Xiaodu, LIAO Lixia, et al. Research progress in performance improvement of silicon anode materials for lithium ions battery[J]. New Chemical Materials, 2020, 48(4):1-4.
[6] 孟奇, 周思源, 李坤, 等. 喷雾干燥法构建硅/碳复合材料及其电化学性能研究[J]. 广州化工, 2019, 47(21):32-36.
MENG Qi, ZHOU Siyuan, LI Kun, et al. Spray drying method to construct silicon/carbon composite and its electrochemical performance[J]. Guangzhou Chemical Industry, 2019, 47(21):32-36.
[7] 杨乐之, 殷敖, 刘志宽, 等. 锂离子电池硅碳负极材料的结构设计研究进展[J]. 矿冶工程, 2019, 39(4):140-144.
YANG Lezhi, YIN Ao, LIU Zhikuan, et al. Structural design research progress of silicon carbon anode materials for lithium-ion batteries[J]. Mining and Metallurgical Engineering, 2019, 39(4):140-144.
[8] 戴剑锋, 朱晓军, 刘骥飞, 等. 硅基锂离子电池负极材料的容量衰减及改进研究[J]. 化工新型材料, 2019, 47(5):222-226.
DAI Jianfeng, ZHU Xiaojun, LIU Jifei, et al. Study on the capacity attenuation and improvement of silicon-based lithium ions battery anode materials[J]. New Chemical Materials, 2019, 47(5):222-226.
[9] 潘雨默, 牛峥, 陈祥祯, 等. 锂离子电池硅基负极材料的研究进展[J]. 电池工业, 2019, 23(2):92-100.
PAN Yumo, NIU Zheng, CHEN Xiangzhen, et al. Research progress on silicon-based anode materials for lithium-ion batteries[J]. Battery Industry, 2019, 23(2):92-100.
[10] 赵云, 亢玉琼, 金玉红, 等. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4):613-630.
doi: 10.7536/PC180916
ZHAO Yun, KANG Yuqiong, JIN Yuhong, et al. Silicon-based anode and related materials for lithium ion batteries[J]. Progress in Chemistry, 2019, 31(4):613-630.
[11] 方锐, 李子坤, 周豪杰, 等. 锂离子电池用硅基负极材料研究进展[J]. 炭素技术, 2021, 40(2):1-5.
FANG Rui, LI Zikun, ZHOU Haojie, et al. Research progress of silicon-based anode materials for lithium-ion batteries[J]. Carbon Technology, 2021, 40(2):1-5.
[12] 侯佼, 侯春平, 孟令桐, 等. 锂离子电池硅基负极材料的研究进展[J]. 炭素技术, 2020, 39(6):1-20.
HOU Jiao, HOU Chunping, MENG Lingtong, et al. Research progress of silicon-based anode materials for lithium-ion batteries[J]. Carbon Technology, 2020, 39(6):1-20.
[13] 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6):1614-1628.
YU Chenlu, TIAN Xiaohua, ZHANG Zhejuan, et al. Research progress in increasing the specific capacity of silicon-based anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6):1614-1628.
[14] 石晓飞, 姜沁源, 李润, 等. 碳纳米管水平阵列的结构控制生长:进展与展望[J]. 化工学报, 2021, 72(1):86-115.
SHI Xiaofei, JIANG Qinyuan, LI Run, et al. Structure-controlled growth of carbon nanotube horizontal arrays: progress and prospects[J]. CIESC Journal, 2021, 72(1):86-115.
[15] LIU H, CHEN Y, JIANG B, et al. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries[J]. Dalton Transactions, 2020, 49(17):5669-5676.
doi: 10.1039/D0DT00566E
[16] YIN A, YANG L, ZHUANG Z, et al. A novel silicon graphite composite material with core-shell structure as an anode for lithium-ion batteries[J]. Energy Storage, 2020, 2(4):1-14.
[17] 李春晓. 锂离子电池负极材料研究进展[J]. 新材料产业, 2017(9):27-33.
LI Chunxiao. Research progress of anode materials for lithium-ion batteries[J]. New Material Industry, 2017(9):27-33.
[18] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007, 21(8):77-83.
CAO Wei, SONG Xuemei, WANG Bo, et al. Research progress of carbon nanotubes[J]. Materials Reports, 2007, 21(8):77-83.
[19] GIVARGIZONVE I. Fundamental aspects of VLS growth[J]. Journal of Crystal Growth, 1975, 31:20-30.
doi: 10.1016/0022-0248(75)90105-0
[20] 王飞雪, 张永刚, 陈友氾. 碳纤维多尺度增强体的研究进展[J]. 高科技纤维与应用, 2013, 38(5):40-46.
WANG Feixue, ZHANG Yonggang, CHEN Youpan. Research progress of carbon fiber multi-scale rein-forcers[J]. High-tech Fiber & Application, 2013, 38(5):40-46.
[21] 赵悠曼, 严小波, 段红坤. 碳纳米管导电剂对硅碳负极锂离子电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1):118-127.
ZHAO Youman, YAN Xiaobo, DUAN Hongkun. Exploration of carbon nanotube conductor for improving the performance of SiC negative lithium-ion battery[J]. Energy Storage Science and Technology, 2021, 10(1):118-127.
[22] 刘晋捷, 李克, 李彦博. 多孔SiOx/C/CNTs高性能锂离子负极复合材料[J]. 电源技术, 2020, 44(12):1725-1728.
LIU Jinjie, LI Ke, LI Yanbo. Porous SiOx/C/CNTs lithium-ion anode composites with high perfor-mance[J]. Power Supply Technology, 2020, 44(12):1725-1728.
[23] WANG H, FU J, WANG C, et al. A binder-free high silicon content flexible anode for Li-ion batteries[J]. Energy Environ Sci, 2020, 13(1):848-858.
doi: 10.1039/C9EE02615K
[1] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[2] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[3] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[4] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[5] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[6] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[7] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[8] 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154.
[9] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[10] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[11] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[12] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[13] 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126.
[14] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[15] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!