纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 49-56.doi: 10.13475/j.fzxb.20200904808
张亚茹1,2, 胡毅1,2(), 程钟灵1,2, 许仕林1,2
ZHANG Yaru1,2, HU Yi1,2(), CHENG Zhongling1,2, XU Shilin1,2
摘要:
针对Si材料储能过程中体积膨胀的问题,首先采用静电纺丝技术制备聚丙烯腈(PAN)/Si /Fe复合纳米纤维(NFs)膜,然后经化学气相沉积法在复合NFs膜上生长碳纳米管(CNTs),最后经800 ℃炭化得到PAN基Si/C/CNTs复合碳纳米纤维(CNFs)膜。借助扫描电子显微镜、透射电子显微镜、X射线衍射仪、热重分析仪等表征复合CNFs膜的结构与性能,并将其用于锂离子电池负极进行电化学性能测试。结果表明:用添加质量分数为15% 的FeSO4(占PAN)催化剂的纺丝液制备的复合CNFs膜具有独特毛毛虫结构,其可有效提升电池的电化学性能,具有2 067.9 mA·h/g的初始放电比容量,循环400圈后仍具有851.2 mA·h/g 的放电比容量,每圈的容量衰减率仅为 0.15%。
中图分类号:
[1] | 李靓晗, 简现龙, 张森, 等. 柔性自支撑CNT/Si复合薄膜的制备及储能性能[J]. 化工学报, 2020, 71(6):2804-2810. |
LI Lianghan, JIAN Xianlong, ZHANG Sen, et al. Preparation and energy storage performance of flexible and self-supporting CNT/Si composite film[J]. CIESC Journal, 2020, 71(6):2804-2810. | |
[2] | 胡倩倩, 长世勇, 张灵志, 等. 一种分散在多孔碳上的碳包覆硅负极的制备及应用[J]. 新能源进展, 2020, 8(2):131-135. |
HU Qianqian, CHANG Shiyong, ZHANG Lingzhi, et al. Preparation and application of a carbon-coated silicon anode dispersed on porous carbon[J]. New Energy Development, 2020, 8(2):131-135. | |
[3] |
LIN H, CHEN Y, JIANG B, et al. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries[J]. Dalton Transactions, 2020, 49(17):5669-5676.
doi: 10.1039/D0DT00566E |
[4] | 周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2):569-582. |
ZHOU Junhua, LUO Fei, CHU Geng, et al. Research progress of nano-silicon-carbon anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2):569-582. | |
[5] | 肖钰, 梁晓杜, 廖丽霞, 等. 锂离子电池硅负极材料性能改进的研究进展[J]. 化工新型材料, 2020, 48(4):1-4. |
XIAO Yu, LIANG Xiaodu, LIAO Lixia, et al. Research progress in performance improvement of silicon anode materials for lithium ions battery[J]. New Chemical Materials, 2020, 48(4):1-4. | |
[6] | 孟奇, 周思源, 李坤, 等. 喷雾干燥法构建硅/碳复合材料及其电化学性能研究[J]. 广州化工, 2019, 47(21):32-36. |
MENG Qi, ZHOU Siyuan, LI Kun, et al. Spray drying method to construct silicon/carbon composite and its electrochemical performance[J]. Guangzhou Chemical Industry, 2019, 47(21):32-36. | |
[7] | 杨乐之, 殷敖, 刘志宽, 等. 锂离子电池硅碳负极材料的结构设计研究进展[J]. 矿冶工程, 2019, 39(4):140-144. |
YANG Lezhi, YIN Ao, LIU Zhikuan, et al. Structural design research progress of silicon carbon anode materials for lithium-ion batteries[J]. Mining and Metallurgical Engineering, 2019, 39(4):140-144. | |
[8] | 戴剑锋, 朱晓军, 刘骥飞, 等. 硅基锂离子电池负极材料的容量衰减及改进研究[J]. 化工新型材料, 2019, 47(5):222-226. |
DAI Jianfeng, ZHU Xiaojun, LIU Jifei, et al. Study on the capacity attenuation and improvement of silicon-based lithium ions battery anode materials[J]. New Chemical Materials, 2019, 47(5):222-226. | |
[9] | 潘雨默, 牛峥, 陈祥祯, 等. 锂离子电池硅基负极材料的研究进展[J]. 电池工业, 2019, 23(2):92-100. |
PAN Yumo, NIU Zheng, CHEN Xiangzhen, et al. Research progress on silicon-based anode materials for lithium-ion batteries[J]. Battery Industry, 2019, 23(2):92-100. | |
[10] |
赵云, 亢玉琼, 金玉红, 等. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4):613-630.
doi: 10.7536/PC180916 |
ZHAO Yun, KANG Yuqiong, JIN Yuhong, et al. Silicon-based anode and related materials for lithium ion batteries[J]. Progress in Chemistry, 2019, 31(4):613-630. | |
[11] | 方锐, 李子坤, 周豪杰, 等. 锂离子电池用硅基负极材料研究进展[J]. 炭素技术, 2021, 40(2):1-5. |
FANG Rui, LI Zikun, ZHOU Haojie, et al. Research progress of silicon-based anode materials for lithium-ion batteries[J]. Carbon Technology, 2021, 40(2):1-5. | |
[12] | 侯佼, 侯春平, 孟令桐, 等. 锂离子电池硅基负极材料的研究进展[J]. 炭素技术, 2020, 39(6):1-20. |
HOU Jiao, HOU Chunping, MENG Lingtong, et al. Research progress of silicon-based anode materials for lithium-ion batteries[J]. Carbon Technology, 2020, 39(6):1-20. | |
[13] | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6):1614-1628. |
YU Chenlu, TIAN Xiaohua, ZHANG Zhejuan, et al. Research progress in increasing the specific capacity of silicon-based anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6):1614-1628. | |
[14] | 石晓飞, 姜沁源, 李润, 等. 碳纳米管水平阵列的结构控制生长:进展与展望[J]. 化工学报, 2021, 72(1):86-115. |
SHI Xiaofei, JIANG Qinyuan, LI Run, et al. Structure-controlled growth of carbon nanotube horizontal arrays: progress and prospects[J]. CIESC Journal, 2021, 72(1):86-115. | |
[15] |
LIU H, CHEN Y, JIANG B, et al. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries[J]. Dalton Transactions, 2020, 49(17):5669-5676.
doi: 10.1039/D0DT00566E |
[16] | YIN A, YANG L, ZHUANG Z, et al. A novel silicon graphite composite material with core-shell structure as an anode for lithium-ion batteries[J]. Energy Storage, 2020, 2(4):1-14. |
[17] | 李春晓. 锂离子电池负极材料研究进展[J]. 新材料产业, 2017(9):27-33. |
LI Chunxiao. Research progress of anode materials for lithium-ion batteries[J]. New Material Industry, 2017(9):27-33. | |
[18] | 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007, 21(8):77-83. |
CAO Wei, SONG Xuemei, WANG Bo, et al. Research progress of carbon nanotubes[J]. Materials Reports, 2007, 21(8):77-83. | |
[19] |
GIVARGIZONVE I. Fundamental aspects of VLS growth[J]. Journal of Crystal Growth, 1975, 31:20-30.
doi: 10.1016/0022-0248(75)90105-0 |
[20] | 王飞雪, 张永刚, 陈友氾. 碳纤维多尺度增强体的研究进展[J]. 高科技纤维与应用, 2013, 38(5):40-46. |
WANG Feixue, ZHANG Yonggang, CHEN Youpan. Research progress of carbon fiber multi-scale rein-forcers[J]. High-tech Fiber & Application, 2013, 38(5):40-46. | |
[21] | 赵悠曼, 严小波, 段红坤. 碳纳米管导电剂对硅碳负极锂离子电池性能提升的探索[J]. 储能科学与技术, 2021, 10(1):118-127. |
ZHAO Youman, YAN Xiaobo, DUAN Hongkun. Exploration of carbon nanotube conductor for improving the performance of SiC negative lithium-ion battery[J]. Energy Storage Science and Technology, 2021, 10(1):118-127. | |
[22] | 刘晋捷, 李克, 李彦博. 多孔SiOx/C/CNTs高性能锂离子负极复合材料[J]. 电源技术, 2020, 44(12):1725-1728. |
LIU Jinjie, LI Ke, LI Yanbo. Porous SiOx/C/CNTs lithium-ion anode composites with high perfor-mance[J]. Power Supply Technology, 2020, 44(12):1725-1728. | |
[23] |
WANG H, FU J, WANG C, et al. A binder-free high silicon content flexible anode for Li-ion batteries[J]. Energy Environ Sci, 2020, 13(1):848-858.
doi: 10.1039/C9EE02615K |
[1] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[2] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[3] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[4] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[5] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[6] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[7] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[8] | 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154. |
[9] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[10] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[11] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[12] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
[13] | 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126. |
[14] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[15] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
|