纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 56-63.doi: 10.13475/j.fzxb.20200905009

• 纺织工程 • 上一篇    下一篇

芳纶织物及其包容环的弹道冲击与数值模拟

牟浩蕾1,2, 解江2, 裴惠2, 冯振宇2, 耿宏章1()   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.中国民航大学 安全科学与工程学院, 天津 300300
  • 收稿日期:2020-09-21 修回日期:2021-07-22 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 耿宏章
  • 作者简介:牟浩蕾(1987—),男,副研究员。主要研究方向为结构冲击动力学。
  • 基金资助:
    航空科学基金项目(201941067001)

Ballistic impact tests and numerical simulation of aramid fabric and containment ring

MOU Haolei1,2, XIE Jiang2, PEI Hui2, FENG Zhenyu2, GENG Hongzhang1()   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • Received:2020-09-21 Revised:2021-07-22 Published:2021-11-15 Online:2021-11-29
  • Contact: GENG Hongzhang

摘要:

为研究芳纶织物及其包容环的弹道冲击机制,通过准静态及动态拉伸实验获取材料力学性能,采用弹道冲击实验获得织物及包容环的冲击性能,同时建立多层壳模型并基于实验结果进行验证。结果表明:应变率对织物力学性能有较为显著的影响,在织物弹道冲击中织物吸能量与失效模式相关,呈现明显的边界效应;在包容环弹道冲击中,能量的耗散主要是通过纱线应变能、纱线断裂以及纱线间相互作用;相同入射速度下,织物层数越少,吸能量越少,织物层数增加时吸能量增大,但吸能增加量减小;多层壳模型能够较好地复现弹道冲击过程,仿真失效形貌、弹体剩余速度和吸能比率均与实验结果接近。

关键词: 芳纶织物, 包容环, 弹道冲击, 失效模式, 响应特性, 数值模拟

Abstract:

To investigate the ballistic impact response characteristics of aramid fabric and its containment ring, the mechanical properties of the aramid fabric were obtained by conducting the quasi-static and dynamic tensile tests, and the impact performance of the aramid fabric plate and its containment ring were determined by conducting the ballistic impact tests. The numerical multi-layer shell models were built and verified using the test results. The research results show that the strain rate has a significant effect on the mechanical properties of the aramid fabric.For the fabric ballistic impact tests, the energy absorption of the aramid fabric is related to the failure mode, and there are obvious boundary effects. For the ballistic impact tests on the containment ring, the energy is dissipated mainly through the yarn strain energy, the yarn breakage and the interaction between yarns. At the same incident velocities, the smaller is the number of layers, the less energy is absorbed. When the number of fabric layers increases, the more energy is absorbed, but the increment of energy absorption decreases. The multi-layer shell models can well reproduce the ballistic impact process, and the simulated failure morphology, the residual velocity of projectile, and the absorbed energy percent difference are close to the test results, which can effectively verify the multi-layer shell models.

Key words: aramid fabric, containment ring, ballistic impact, failure mode, response characteristic, numerical simulation

中图分类号: 

  • V231.91

图1

典型的准静态拉伸过程"

图2

准静态拉伸应力-应变曲线"

图3

动态拉伸应力-应变曲线"

表1

弹道冲击实验结果"

实验
编号
弹体
质量/g
层数 入射速度/
(m·s-1)
剩余速度/
(m·s-1)
ΔE/% V50/
(m·s-1)
结果
1# 175.9 2 137.4 130.40 9.93 43.3 穿透
2# 175.9 4 129.8 106.00 33.30 74.9 穿透
3# 175.6 6 133.8 85.80 58.90 102.6 穿透
4# 175.9 8 131.8 0 100.00 未穿透
5# 176.0 6 103.0 0 100.00 未穿透
6# 175.5 6 122.0 22.27 96.70 119.9 穿透
7# 174.3 6 152.4 103.80 53.60 111.6 穿透

图4

6#实验弹道冲击过程"

图5

缠绕机与包容环"

表2

包容环弹道冲击实验结果"

实验
编号
弹体
质量/g
层数 入射速度/
(m·s-1)
剩余速度/
(m·s-1)
ΔE/% V50/
(m·s-1)
结果
1* 175.4 2 140.0 115.0 32.5 79.8 穿透
2* 175.4 4 140.4 84.5 63.8 111.6 穿透
3* 175.6 6 141.4 42.7 90.9 134.8 穿透
4* 175.7 8 140.8 0 100.0 未穿透
5* 175.4 6 119.3 0 100.0 未穿透
6* 175.9 6 131.1 22.1 97.2 129.2 穿透
7* 175.7 6 146.2 66.9 78.8 130.0 穿透

图6

冲击过程"

图7

织物变形及损伤"

图8

吸能情况分析"

图9

包容环有限元模型"

图10

非包容过程和包容过程仿真"

图11

损伤形貌对比"

图12

织物吸能量-时间曲线"

表3

织物弹道冲击仿真与实验结果对比"

实验
编号
层数 入射速度/
(m·s-1)
剩余速度/(m·s-1) 吸能比率/%
实验 仿真 实验 仿真 差值
1* 2 137.4 130.40 121.0 9.93 22.4 -12.47
2* 4 129.8 106.00 112.0 33.30 25.5 7.80
3* 6 133.8 85.80 71.6 58.90 71.4 -12.50
4* 8 131.8 0 0 100.00 100.0 0
5* 6 122.0 22.27 60.9 96.70 75.0 21.70
6* 6 152.4 103.80 98.5 53.60 58.2 -4.60

图13

3*实验仿真结果"

图14

3*实验弹体速度-时间曲线"

图15

4*实验仿真结果"

图16

4*实验仿真弹体速度-时间曲线"

表4

芳纶织物包容环冲击仿真与实验结果对比"

实验
编号
入射速度/
(m·s-1)
剩余速度/(m·s-1) 吸能比率/%
实验 仿真 实验 仿真 差值
1* 140.0 115.0 110.2 32.5 38.4 -5.9
2* 140.4 84.5 88.2 63.8 60.5 3.3
3* 141.4 42.7 43.4 90.8 90.6 0.2
4* 140.8 0 -21.6 100.0 97.6 2.4
5* 119.3 0 0 100.0 100.0 0
6* 131.1 22.1 20.3 97.2 97.6 -0.4
7* 146.2 66.9 70.9 79.1 76.5 2.6
[1] SINHA S K, DORBALA S. Dynamic loads in the fan containment structure of a turbofan engine[J]. Journal of Aerospace Engineering, 2009, 22(3):260-269.
doi: 10.1061/(ASCE)0893-1321(2009)22:3(260)
[2] HORIBE K, KAWAHIRA K, SAKAI J, et al. Development of GE90-115B turbofan engine[J]. Ihi Engineering Review, 2004, 37(1):1-8.
[3] 宣海军, 陆晓, 洪伟荣, 等. 航空发动机机匣包容性研究综述[J]. 航空动力学报, 2010, 25(8):1860-1870.
XUAN Haijun, LU Xiao, HONG Weirong, et al. Review of aeroengine case containment research[J]. Journal of Aerospace Power, 2010, 25(8):1860-1870.
[4] GERSTLE J H. Analysis of rotor fragment impact on ballistic fabric engine burst containment shields[J]. Journal of Aircraft, 2012, 12(4):388-393.
doi: 10.2514/3.44461
[5] GOPINATH G, BATRA R C. Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic-plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes[J]. International Tournail of Non-linear Mechanics, 2020, 125:1-16.
[6] CHEN J L, WEN X J, SHAO Y W, et al. Highly stretchable, stability, flexible yarn-fabric-based multi-scale negative Poisson's ratio composites[J]. Composite Structures, 2020, 250:1-9.
[7] LIU T, SUN B Z, GU B H. Effects of yarn defects and specimen size on impact compressive damages of 3-D angle interlock woven composites[J]. International Journal of Damage Mechanics, 2017, 27(9):1380-1396.
doi: 10.1177/1056789517733123
[8] 赵磊, 刘元坤, 刘华, 等. 三维机织增强复合材料弹道冲击边缘部分有限元分析[J]. 纺织学报, 2016, 37(5):68-74.
ZHAO Lei, LIU Yuankun, LIU Hua, et al. Finite element analysis on ballistic impact edge part of three-dimensional woven fabric reinforced composite[J]. Journal of Textile Research, 2016, 37(5):68-74.
[9] PASQUALI M, GAUDENZI P. Effects of curvature on high-velocity impact resistance of thin woven fabric composite targets[J]. Composite Structures, 2017, 160:349-365.
doi: 10.1016/j.compstruct.2016.10.069
[10] 武鲜艳, 申屠宝卿, 马倩, 等. 球形弹体冲击下三维正交机织物结构破坏机制有限元分析[J]. 纺织学报, 2020, 41(8):32-38.
WU Xianyan, SHENTU Baoqing, MA Qian, et al. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile[J]. Journal of Textile Research, 2020, 41(8):32-38.
doi: 10.1177/004051757104100106
[11] BANDARU A K, PATEL S, SACHAN Y, et al. Low velocity impact response of 3D angle-interlock Kevlar/basalt reinforced polypropylene composites[J]. Materials and Design, 2016, 105:323-332.
doi: 10.1016/j.matdes.2016.05.075
[12] 王文莎, 阎建华, 顾海麟. 二维三轴向编织混杂层合复合材料的冲击性能[J]. 纺织学报, 2015, 36(10):54-61.
WANG Wensha, YAN Jianhua, GU Hailin. Investigation on impact properties of 2-D triaxial braided-hybrid laminated composites[J]. Journal of Textile Research, 2015, 36(10):54-61.
[13] 练军, 顾伯洪, 王善元. 织物及其复合材料的弹道冲击性能[J]. 纺织学报, 2006, 27(8):109-112.
LIAN Jun, GU Bohong, WANG Shanyuan. Ballistic impact properties of the fabric and its composite laminates[J]. Journal of Textile Research, 2006, 27(8):109-112.
[14] WANG H, HAZELL P J, SHANKAR K, et al. Effects of fabric folding and thickness on the impact behaviour of multi-ply UHMWPE woven fabrics[J]. Journal of Materials Science, 2017, 52(24):13977-13991.
doi: 10.1007/s10853-017-1482-y
[15] WANG H, HAZELL P J, SHANKAR K, et al. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices[J]. Polymer Testing, 2017, 61:17-26.
doi: 10.1016/j.polymertesting.2017.04.026
[16] TAPIE E, TAN E S L, GUO Y B, et al. Effects of pre-tension and impact angle on penetration resistance of woven fabric[J]. International Journal of Impact Engineering, 2017, 106:171-190.
doi: 10.1016/j.ijimpeng.2017.03.022
[17] SHARDA J, DEENADAYALU C, MOBASHER B, et al. Modeling of multilayer composite fabrics for gas turbine[J]. Journal of Aerospace Engineering, 2006, 19(1):38-45.
doi: 10.1061/(ASCE)0893-1321(2006)19:1(38)
[18] BANSAL S, MOBASHER B, RAJAN S D. Development of fabric constitutive behavior for use in modeling engine fan blade-out events[J]. Journal of Aerospace Engineering, 2009, 7:249-259.
[19] 刘璐璐. 二维三轴编织带缠绕碳纤维复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2014:9-60.
LIU Lulu. Research on the containment of 2D carbon fiber triaxial braided tape wound composite casing[D]. Hangzhou: Zhejiang University, 2014:9-60.
[20] 牛丹丹. Kevlar织物缠绕增强机匣包容性研究[D]. 杭州: 浙江大学, 2015:5-26.
NIU Dandan. Research on the containment of Kevlar fabric reinforced casing[D]. Hangzhou: Zhejiang University, 2015:5-26.
[21] 练军, 顾伯洪. 三维编织复合材料动态冲击性能的数值模拟[J]. 纺织学报, 2011, 32(1):41-45,50.
LIAN Jun, GU Bohong. Numerical simulation of dynamic performance of three-dimensional braided composites[J]. Journal of Textile Research, 2011, 32(1):41-45,50.
[22] 冯振宇, 裴惠, 迟琪琳, 等. Kevlar织物软壁包容环抗冲击数值仿真分析研究[J]. 振动与冲击, 2020, 39(10):15-23.
FENG Zhenyu, PEI Hui, CHI Qilin, et al. Investigation on the high speed impact numerical simulation of Kevlar fabrics soft-wall containment[J]. Journal of Vibration and Shock, 2020, 39(10):15-23.
[1] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[2] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[3] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[4] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[5] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
[6] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[7] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[8] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[9] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[10] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[11] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[12] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[13] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[14] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[15] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[5] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .
[10] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .