纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 61-66.doi: 10.13475/j.fzxb.20200907006

• 纺织工程 • 上一篇    下一篇

基于自由转子的纱线扭矩的检测方法

洪焱1, 沈小林1(), 田野2, 吴三宝2, 杨进2   

  1. 1.武汉纺织大学 纺织新材料与先进加工技术省部共建国家重点实验室, 湖北 武汉 430200
    2.广东溢达纺织有限公司, 广东 佛山 528000
  • 收稿日期:2020-09-27 修回日期:2021-06-21 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 沈小林
  • 作者简介:洪焱(1995—),男,硕士生。主要研究方向为功能性纺织品材料。

Measurement method of yarn torque using a free rotor

HONG Yan1, SHEN Xiaolin1(), TIAN Ye2, WU Sanbao2, YANG Jin2   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University,Wuhan, Hubei 430200, China
    2. Guangdong Esquel Textile Co., Ltd., Foshan, Guangdong 528000, China
  • Received:2020-09-27 Revised:2021-06-21 Published:2021-10-15 Online:2021-10-29
  • Contact: SHEN Xiaolin

摘要:

纺织用纱线在加捻过程中会使其内部存在一个较强的扭矩,为对纱线的扭矩进行准确的测量使其匹配准确的蒸纱定形标准,减小因纱线内部残存扭矩造成织物纬斜概率,提出了以自由转子为核心的纱线扭矩的检测方法。首先与纱线末端相连的自由转子在电磁阻尼的作用下由静止开始平稳转动,光电传感器对其转动状态进行扫描并将捕捉到的光电信号传输至计算机得到转子转过的角度与时间的数据关系,然后在Origin中对其进行二次求导拟合出角加速度与时间的关系曲线。由曲线可准确得到转子的初始角加速度,通过初始角加速度和测试所用转子转动惯量的乘积即可快速高效得到测试纱线的扭矩。实验结果表明:该方法能够准确测出各类纱线的扭矩,数据误差较小,不仅在如今的纺织业生产检测中具有广阔的应用前景,而且为纱线扭矩领域的研究提供了一种新的思路。

关键词: 纱线, 扭矩, 自由转子, 光电传感器, 角加速度, 转动惯量

Abstract:

In order to measure accurately the torque of the yarn to match the yarn steaming standard, and to reduce the probability of skewed weft in fabrics due to the residual torque of the yarn, a method was proposed to detect the torque of yarn with the use of a free rotor as the core. Firstly, the free rotor was connected to the end of the yarn before starting to rotate smoothly under the action of electromagnetic damping. The photoelectric sensor was placed to scan the rotating status and to transmit the captured photoelectric signal to the computer, for studying the relationship between the rotor's rotation angle and time to obtain the angular acceleration versus time curve by means of the second order of differentiation using Origin. Upon the availability of the initial angular acceleration of the rotor from the curve, and the torque of the test yarn can be quickly and efficiently obtained by multiplying the initial angular acceleration and the rotor's rotational inertia. The experimental results show that the method can accurately measure the torque of various yarns with small relative error, which not only has a broad application prospect in today's textile production testing, but also provides a new way of thinking in the field of yarn torque research.

Key words: yarn, torque, free rotor, photoelectric sensor, angular acceleration, rotational inertia

中图分类号: 

  • TS103

图1

转子的详细结构 1—齿轮圆盘;2—圆棒;3—穿纱孔;4—磁性金属片;5—圆锥底盘。"

图2

圆锥底盘"

表1

样品纱线的参数"

纱线类别 捻度/(捻·m-1) 线密度/tex 直径/mm
白色纱线 800 47.1 0.254
蓝色纱线 630 29.2 0.198
粉红色纱线 630 29.2 0.195
紫色纱线 630 29.2 0.201
深红色纱线 840 19.4 0.163
绿色纱线 840 19.4 0.165
棕色纱线 840 19.4 0.159

图3

转子转过的角度、角速度和角加速度与时间的关系曲线"

表2

不同长度纱线的测试数据"

纱线长度/
cm
转子角加速度平
均值/(rad· s - 2)
变异系
数/%
纱线的扭
矩/10-6(N·m)
8 2.30 0.82 1.52
10 2.26 0.79 1.49
12 2.28 0.62 1.51
14 2.27 1.04 1.50
16 2.31 0.91 1.53
18 2.26 1.01 1.49
20 2.27 0.92 1.50
22 2.28 1.24 1.51

图4

转子的角加速度与时间的关系曲线"

表3

不同捻度纱线的测试数据"

纱线捻度/
(捻·m-2)
转子角加速度平
均值/(rad· s - 2)
变异系
数/%
纱线的扭矩/
10-7(N·m)
530 0.73 1.94 4.83
563 0.82 1.09 5.42
597 0.89 1.59 5.88
630 1.40 1.01 9.25
663 1.85 1.60 12.2
697 2.03 0.82 15.2
730 2.62 1.08 17.3
763 3.09 1.02 20.4
797 3.43 0.86 22.7

图5

不同加捻程度的纱线扭矩与捻度的关系曲线"

表4

同线密度不同颜色纱线的测试数据"

纱线
类型
转子角加速度平
均值/(rad·s-2)
变异系
数/%
纱线的扭
矩/10-7(N·m)
29.2 tex粉红色纱线 1.34 1.70 8.86
29.2 tex蓝色纱线 1.40 1.35 9.25
29.2 tex紫色纱线 1.29 1.10 8.53
19.4 tex绿色纱线 1.09 0.82 7.20
19.4 tex棕色纱线 1.36 1.04 8.99
19.4 tex深红色纱线 1.20 1.39 7.93
[1] 史先传, 董冲, 苏胜辉, 等. 结合Sobel和PPHT的织物纬斜检测方法研究[J]. 计算机测量与控制, 2020, 28(8):48-52, 57.
SHI Xianchuan, DONG Chong, SU Shenghui, et al. Research on fabric weft skew detection method combining Sobe land PPHT[J]. Computer Measurement and Control, 2020, 28(8):48-52, 57.
[2] 曲丽君. 针织用棉纱蒸纱实践[J]. 纺织导报, 2008(10):98-99.
Qu Lijun. The practice of steaming cotton yarn for knitting[J]. China Textile Leader, 2008(10):98-99.
[3] 吴雄英. 纤维和纱线扭转性能及扭应力松弛行为的研究综述[J]. 东华大学学报(自然科学版), 2001, 27(5):132-138.
WU Xiongying. Review of the research on the torsional properties and torsional stress relaxation behavior of fibers and yarns[J]. Journal of Donghua University (Natural Science), 2001, 27(5):132-138.
[4] ZUREK W, DURSKA I . The torsional rigidity of blend yarns[J]. Textile Research Journal, 1980, 50(9):555-567.
doi: 10.1177/004051758005000907
[5] FREESTON W D, PLATT MM, BUTTERWORTH G. Mechanics of elastic perforance of textile materials, part XVII: torsional recovery of filaments and singles yarns, and plied-yarn balance[J]. Textile Research Journal, 1966, 36(1):12-30.
doi: 10.1177/004051756603600103
[6] 王涛. 光电传感器的原理及应用探讨[J]. 计算机产品与流通, 2018(7): 64, 122.
WANG Tao. Discussion on the principle and application of photoelectric sensors [J]. Computer Products and Circulation, 2018(7): 64, 122.
[7] 阎景云. 刚体绕定轴转动定律和角动量定理的表达式[J]. 运城高专学报, 1990(3):64-71.
YAN Jingyun. Expressions of the law of rigid body rotation around a fixed axis and the law of angular momentum[J]. Journal of Yuncheng College, 1990(3):64-71.
[8] 杨小云. 常见均匀刚体转动惯量的计算[J]. 科技资讯, 2018, 16(29):184-185.
YANG Xiaoyun. Calculation of moment of inertia of common rigid body[J]. Science and Technology Information, 2018, 16(29):184-185.
[9] 温亚芹. 刚体转动惯量计算方法研究[J]. 黑龙江科学, 2019, 10(6):40-42.
WEN Yaqin. Research on calculation method of rigid body moment of inertia[J]. Heilongjiang Science, 2019, 10(6):40-42.
[10] 田硕. 刚体转动惯量的几种计算方法[J]. 中国西部科技, 2015, 14(6):82-84.
TIAN Shuo. Several calculation methods for the moment of inertia of rigid bodies[J]. Western China Science and Technology, 2015, 14(6):82-84.
[11] 蓝善权. 圆盘转动惯量的三种计算方法[J]. 黑龙江科学, 2019, 10(23):66-67.
LAN Shanquan. Three calculation methods of disc moment of inertia[J]. Heilongjiang Science, 2019, 10(23):66-67.
[12] 邱为钢. 匀质三角形板和边框的转动惯量[J]. 物理与工程, 2014, 24(3):29-30, 41.
QIU Weigang. Moment of inertia of homogeneous triangular plate and frame[J]. Physics and Engineering, 2014, 24(3):29-30, 41.
[13] 闫敏, 戴语琴, 袁俊, 等. 转动惯量平行轴定理验证实验的改进方案[J]. 大学物理, 2020, 39(5):66-69.
YAN Min, DAI Yuqin, YUAN Jun, et al. An improved scheme for the verification experiment of the parallel axis theorem of moment of inertia[J]. College Physics, 2020, 39(5):66-69.
[14] 莫杰雄. 以常见刚体的转动惯量计算为例谈微元的选取[J]. 长春师范学院学报(自然科学版), 2010, 29(6):24-26.
MO Jiexiong. Take the calculation of the moment of inertia of common rigid bodies as an example to discuss the selection of micro-elements[J]. Journal of Changchun Normal University (Natural Science Edition), 2010, 29(6):24-26.
[1] 洪焱 沈小林 田野 吴三宝 杨进. 基于自由转子的纱线扭矩的检测方法[J]. , 2021, 42(10): 0-0.
[2] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[3] 吴佳庆, 王迎, 郝新敏, 宫玉梅, 郭亚飞. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(08): 64-70.
[4] 郭明华, 刘新金. 基于切断称重法的细纱机牵伸区内纤维变速点分布研究[J]. 纺织学报, 2021, 42(08): 71-75.
[5] 刘晓倩, 陈玉, 周惠敏, 闫源, 夏鑫. 等离子体接枝丙烯酸改性聚丙烯腈导电纳米纤维纱线的制备[J]. 纺织学报, 2021, 42(05): 109-114.
[6] 袁理, 熊莹, 谷迁, 王丹书, 霍达, 刘军平. 染色纤维与色纺纱线间的颜色传递规律及其影响因素[J]. 纺织学报, 2021, 42(05): 122-129.
[7] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[8] 阮丽, 孙荣基, 刘基宏, 李永贵. 特殊外观结构赛络花式纱的后区牵伸及成纱结构分析[J]. 纺织学报, 2021, 42(03): 77-81.
[9] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[10] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[11] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[13] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[14] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
[15] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!