纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 139-145.doi: 10.13475/j.fzxb.20200908507

• 服装工程 • 上一篇    下一篇

不同环境下个体通风服的制冷量

吴国珊1,2, 刘何清1(), 吴世先1,2, 游波1, 宋小鹏2   

  1. 1.湖南科技大学 资源环境与安全工程学院, 湖南 湘潭 411201
    2.桂林航天工业学院能源与建筑环境学院, 广西 桂林 541004
  • 收稿日期:2020-09-30 修回日期:2021-06-17 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 刘何清
  • 作者简介:吴国珊(1980—),男,副教授,博士生。主要研究方向为矿井热害防治与人体热舒适。
  • 基金资助:
    国家自然科学基金项目(51474105);国家自然科学基金项目(51704110)

Cooling capacity of personal ventilation systems in different environments

WU Guoshan1,2, LIU Heqing1(), WU Shixian1,2, YOU Bo1, SONG Xiaopeng2   

  1. 1. School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
    2. School of Energy and Building Environment Engineering, Guilin University of Aerospace Technology, Guilin, Guangxi 541004, China
  • Received:2020-09-30 Revised:2021-06-17 Published:2021-10-15 Online:2021-10-29
  • Contact: LIU Heqing

摘要:

在不同热环境和人体新陈代谢率下,通风服的制冷量还不明确。根据人体皮肤温度与新陈代谢率、直肠温度以及环境参数之间的关系,基于通风服进出口空气焓差法的制冷量计算模型,对新陈代谢率分别为210 W/m2(重度劳动)和145 W/m2(中度劳动)下,温度为30~40 ℃、湿度为0~100%、通风量为10~40 m3/h时通风服的制冷量进行计算。根据计算结果绘制不同新陈代谢率和热环境下通风服制冷量的等值线图。研究发现:环境温度越高,湿度越大,通风服制冷量越小;在高温高湿环境下,通风服制冷量存在为0和负数的情况。通气量对制冷量的正负无影响;通气量越大,制冷量的绝对值越大,在相同环境参数和通气量时,人体新陈代谢率增加,通风服的制冷量越大。

关键词: 通风服, 制冷量, 热环境, 热舒适

Abstract:

In different thermal environment and human metabolic rate, the cooling capacity of personal ventilation system (PVS) is unclear. According to the relationship between skin temperature and metabolic rate, rectal temperature and environmental parameters, the calculation model of cooling capacity was established based on the method of enthalpy difference between the inlet and outlet air of PVS. The cooling capacity of PVS were calculated when the temperature was 30-40 ℃, the humidity was 0-100% and the air flow is 10-40 m3/h, the metabolic rate were 210 W/m2 (heavy labor) and 145 W/m2 (moderate labor) respectively. According to the calculation results, the contour maps of cooling capacity of PVS under different metabolic rate and thermal environment were drawn. It was found that the higher the ambient temperature and the humidity was, and the smaller the cooling capacity was. In the high temperature and humidity environment, the cooling capacity of PVS may become zero or negative. The air flow only affects the absolute value of cooling capacity. The larger the air flow was, the larger the absolute value of cooling capacity was. When the environmental parameters and ventilation were constant, the higher the metabolic rate of the human body, the greater the cooling capacity of PVS. When the metabolic rate of the human body and environmental parameters are known, the cooling capacity of PVS can be calculated according to this method.

Key words: personal ventilation system, cooling capacity, hot environment, thermal comfort

中图分类号: 

  • TB18

图1

个体通风服降温原理示意图"

图2

新陈代谢率为145 W/m2时通风服制冷量随环境温度、湿度变化情况"

图3

新陈代谢率为210 W/m2时通风服制冷量随环境温度、湿度变化情况"

[1] DERRICK John Brake, GRAHAM Peter Bates. Deep body core temperatures in industrial workers under thermal stress[J]. Journal of Occupational and Environmental Medicine, 2002, 44(2):125-135.
doi: 10.1097/00043764-200202000-00007
[2] GUO Tinghui, SHANG Bofeng, DUAN Bin, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015, 49(1):49-50.
[3] KIM D, LABAT K. Design process for developing a liquid cooling garment hood[J]. Ergonomics, 2010, 53:818-828.
doi: 10.1080/00140131003734229
[4] YU Sun, WARREN J J. Numerical modeling of heat and moisture transfer in a wearable convective cooling system for human comfort[J]. Building and Environment, 2015, 93(6):50-62.
doi: 10.1016/j.buildenv.2015.06.008
[5] ZHAO Mengmeng, KUKLANE K, KARIN Lundgren, et al. A ventilation cooling shirt worn during office work in a hot climate: cool or not?[J]. International Journal of Occupational Safety and Ergonomics, 2015, 21(4):457-463.
doi: 10.1080/10803548.2015.1087730 pmid: 26693998
[6] GAO C, KUKLANE K, HOLMÉR I. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6):1207-1216.
doi: 10.1007/s00421-010-1748-4
[7] GLEN P Kenny, ANDREW R Schissler, JILL Stapleton, et al. Ice cooling vest on tolerance for exercise under uncompensable heat stress[J]. Journal of Occupational and Environmental Hygiene, 2011, 8(8):484-491.
doi: 10.1080/15459624.2011.596043 pmid: 21756138
[8] CHAN A P C, ZHANG Y, WANG F. A field study of the effectiveness and practicality of a novel hybrid personal cooling vest worn during rest in Hong Kong construction industry[J]. Journal of Thermal Biology, 2017, 70(9):21-27.
doi: 10.1016/j.jtherbio.2017.07.012
[9] MARIAM Itani, RANA Bachnak, NESREEN Ghaddar, et al. Evaluating performance of hybrid PCM-fan and hybrid PCM-desiccant vests in moderate and hot cli-mates[J]. Journal of Building Engineering, 2019, 22(1):383-396.
doi: 10.1016/j.jobe.2019.01.003
[10] 刘何清, 高黎颖, 游波, 等. 影响气体冷却服热舒适性因素的实验[J]. 西安科技大学学报, 2018, 38(6):910-918.
LIU Heqing, GAO Liying, YOU Bo, et al. Experimental study on factors affecting thermal comfort ability of air cooling garment[J]. Journal of Xi'an University of Science and Technology, 2018, 38(6):910-918.
[11] 赵蒙蒙, 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10):94-97.
ZHAO Mengmeng, SONG Xiaoxia. Influence of cloth ing adopting ventilation system on thermal comfort[J]. Journal of Textile Research, 2017, 38(10):94-97.
[12] 刘何清, 高黎颖, 李伊洁. 冷却服发展状况述评[J]. 矿业工程研究, 2015, 30(4):75-80.
LIU Heqing, GAO Liying, LI Yijie. Review of cooling garment development situation[J]. Mineral Engineering Research, 2015, 30(4):75-80.
[13] 赵蒙蒙, 柯莹, 王发明, 等. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(3):183-188.
ZHAO Mengmeng, KE Ying, WANG Faming, et al. Research and development trend of ventilation clothing thermal comfort[J]. Journal of Textile Research, 2019, 40(3):183-188.
[14] JAY O, CRAMER M N, RAVANELLI N M, et al. Should electric fans be used during a heat wave?[J]. Applied Ergonomics, 2015, 46(1):137-143.
doi: 10.1016/j.apergo.2014.07.013
[15] XU X, GONZALEZ J. Determination of the cooling capacity for body ventilation system[J]. European Journal of Applied Physiology, 2011, 111(12):3155-3160.
doi: 10.1007/s00421-011-1941-0
[16] 沈维道, 童钧耕. 工程热力学[M]. 5版. 北京: 高等教育出版社: 2016: 390.
SHEN Weidao, TONG Jungeng. Engineering Thermodynamics [M]. 5th ed. Beijing: Higher Education Press: 2016: 390.
[17] PETER Mehnert, JACQUES Malchaire, BERNHARD Kampmann, et al. Prediction of the average skin temperature in warm and hot environments[J]. European Journal of Applied Physiology, 2000, 82(1):52-60.
doi: 10.1007/s004210050651
[18] 安瑞平. 强迫通风降温服的设计与评价[D]. 上海:东华大学: 2019: 22-25.
AN Ruiping. Design and evaluation of forced ventilation cooling suit[D]. Shanghai: Donghua Uuiversity, 2019: 22-25.
[1] 吴国珊 刘何清 吴世先 游波 宋小鹏. 不同环境下个体通风服的制冷量[J]. , 2021, 42(10): 0-0.
[2] 潘梦娇, 卢业虎, 王敏. 基于四节点体温调节模型的睡眠系统舒适性预测[J]. 纺织学报, 2021, 42(09): 150-155.
[3] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[4] 赵敬德, 丁义冉, 张春红. 室外高温环境下通风服装的传热模型与实验研究[J]. 纺织学报, 2021, 42(06): 153-159.
[5] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[6] 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(01): 190-196.
[7] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[8] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[9] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[10] 段杏元 胡源盛. 男士针织内衣热性能的测量与分析[J]. 纺织学报, 2016, 37(12): 92-96.
[11] 郭晓芳 刘文娟. 巴尔虎蒙古袍的热舒适性能[J]. 纺织学报, 2016, 37(01): 123-126.
[12] 杨瑞梁 周义德 徐子龙. 棉纺织车间的热舒适性研究[J]. 纺织学报, 2015, 36(03): 54-57.
[13] 黄建华. 睡袋的热舒适模型[J]. 纺织学报, 2015, 36(03): 105-109.
[14] 林雪 王云仪 李俊. 藏袍的非对称式隔热对人体热舒适的影响[J]. 纺织学报, 2014, 35(4): 105-0.
[15] 汪秀清;张昌;高猛. 单向导汗织物的热舒适性[J]. 纺织学报, 2010, 31(10): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!