纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 170-179.doi: 10.13475/j.fzxb.20201000910
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang(), XU Weilin
摘要:
随着科技的快速进步和人民生活水平的显著提高,尤其是新冠肺炎在全球的进一步蔓延,人们对功能性抗菌纺织品提出了更高的要求。为了进一步促进抗菌纺织品的发展,总结了常见的抗菌材料及其抗菌机制,综述了抗菌整理剂在纺织领域中的应用研究进展,指出抗菌纺织品行业亟待解决的问题,并从抗菌整理剂的选择性和高效性、抗菌纺织品的安全性、服用性能和耐久性以及抗菌纺织品检测标准的滞后性和规范性等4个方面展望抗菌整理剂及抗菌纺织品未来发展方向,为抗菌纺织品的跨越式发展提供理论参考,以期推动功能性抗菌纺织品的转型升级。
中图分类号:
[1] |
LI Q, GUAN X H, WU P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England Journal of Medicine, 2020, 382:1199-1207.
doi: 10.1056/NEJMoa2001316 |
[2] |
CALLEWAERT C, MAESENEIRE E D, KERCKHOF F M, et al. Microbial odor profile of polyester and cotton clothes after a fitness session[J]. Applied and Environmental Microbiology, 2014, 80(21):6611-6619.
doi: 10.1128/AEM.01422-14 |
[3] |
RODRIGUEZ C, CARA A D, RENAUD F N R. et al. Antibacterial effects of photocatalytic textiles for footwear application[J]. Catalysis Today, 2014, 230:41-46.
doi: 10.1016/j.cattod.2013.12.023 |
[4] |
NORDSTROM J M, REYNOLDS K A, GERBA C P. Comparison of bacteria on new, disposable, laundered, and unlaundered hospital scrubs[J]. American Journal of Infection Control, 2012, 40(6):539-543.
doi: 10.1016/j.ajic.2011.07.015 |
[5] |
FIJAN S, TURK S Š. Hospital textiles, are they a possible vehicle for healthcare-associated infections?[J]. International Journal of Environmental Research and Public Health, 2012, 9(9):3330-3343.
doi: 10.3390/ijerph9093330 |
[6] |
YANG Z C, WANG B C, YANG X S, et al. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus[J]. Colloids and Surfaces B: Biointerfaces, 2005, 41(2/3):79-81.
doi: 10.1016/j.colsurfb.2004.10.033 |
[7] |
REN X, KOU L, KOCER H B, et al. Antimicrobial coating of an N-halamine biocidal monomer on cotton fibers via admicellar polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/3):711-716.
doi: 10.1016/j.colsurfa.2007.12.007 |
[8] |
DASTJERDI R, MONTAZER M, SHAHSAVAN S. A new method to stabilize nanoparticles on textile surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 345(1/3):202-210.
doi: 10.1016/j.colsurfa.2009.05.007 |
[9] |
WIENER-WELL Y, GALUTY M, RUDENSKY B, et al. Nursing and physician attire as possible source of nosocomial infections[J]. American Journal of Infection Control, 2011, 39(7):555-559.
doi: 10.1016/j.ajic.2010.12.016 |
[10] |
CHEN Q, SHEN X, GAO H. One-step synjournal of silver-poly (4-vinylpyridine) hybrid microgels by γ-irradiation and surfactant-free emulsion polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 275(1/3):45-49.
doi: 10.1016/j.colsurfa.2005.09.016 |
[11] | DIMITROV D S. Interactions of antibody-conjugated nanoparticles with biological surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006 (282/283):8-10. |
[12] |
GAO Y, CRANSTON R. Recent advances in antimicrobial treatments of textiles[J]. Textile Research Journal, 2008, 78(1):60-72.
doi: 10.1177/0040517507082332 |
[13] |
KENAWY E R, ABDEL-FATTAH Y R. Antimicrobial properties of modified and electro-spun poly (vinyl phenol)[J]. Macromolecular Bioscience, 2002, 2(6):261-266.
doi: 10.1002/1616-5195(200208)2:6<261::AID-MABI261>3.0.CO;2-2 |
[14] |
LALA N L, RAMASESHAN R, BOJUM L, et al. Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants[J]. Biotechnology and Bioengineering, 2007, 97(6):1357-1365.
doi: 10.1002/(ISSN)1097-0290 |
[15] |
MA M, SUN Y, SUN G. Antimicrobial cationic dyes: part 1: synjournal and characterization[J]. Dyes and Pigments, 2003, 58(1):27-35.
doi: 10.1016/S0143-7208(03)00025-1 |
[16] |
PERELSHTEIN I, APPLEROT G, PERKST N, et al. Sonochemical coating of silver nanoparticles on textile fabrics(nylon, polyester and cotton) and their antibacterial activity[J]. Nanotechnology, 2008, 19(24):245705.
doi: 10.1088/0957-4484/19/24/245705 |
[17] |
DIZ M, INFANTE M R, ERRA P, et al. Antimicrobial activity of wool treated with a new thiol cationic surfactant[J]. Textile Research Journal, 2001, 71(8):695-700.
doi: 10.1177/004051750107100808 |
[18] |
SEONG H S, KIM J P, KO S W. Preparing chito-oligosaccharides as antimicrobial agents for cotton[J]. Textile Research Journal, 1999, 69(7):483-488.
doi: 10.1177/004051759906900704 |
[19] | 刘伟时. 抗菌纤维的发展及抗菌纺织品的应用[J]. 化纤与纺织技术, 2011, 40(3):22-27. |
LIU Weishi. Development of antimicrobial fiber and application of antimicrobial textiles[J]. Chemical Fiber and Textile Technology, 2011, 40(3):22-27. | |
[20] |
DESAI K, KIT K. Effect of spinning temperature and blend ratios on electrospun chitosan/poly(acrylamide) blends fibers[J]. Polymer, 2008, 49(19):4046-4050.
doi: 10.1016/j.polymer.2008.07.012 |
[21] |
WEN Y, ZHAO R, YIN X, et al. Antibacterial and antioxidant composite fiber prepared from polyurethane and polyacrylonitrile containing tea polyphenols[J]. Fibers and Polymers, 2020, 21(1):103-110.
doi: 10.1007/s12221-020-9497-4 |
[22] | ONAR N, AKSIT A C, SEN Y, et al. Antimicrobial, UV-protective and self-cleaning properties of cotton fabrics coated by dip-coating and solvothermal coating methods[J]. Fibers & Polymers, 2011, 12(4):461-470. |
[23] |
WANG L, XI G H, WAN S J, et al. Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate[J]. Cellulose, 2014, 21(4):2983-2994.
doi: 10.1007/s10570-014-0275-6 |
[24] | ROCKY B P, THOMPSON A J. Investigation and comparison of antibacterial property of bamboo plants, natural bamboo fibers and commercial bamboo viscose textiles[J]. The Journal of The Textile Institute, 2020: 112(7):1807300. |
[25] |
XU X X, GONG J X, ZHANG T, et al. Insights into antibacterial mechanism of Apocynum venetum L fiber: evolution of bioactive natural substances in bast during chemical degumming process[J]. Industrial Crops and Products, 2020, 151:112419.
doi: 10.1016/j.indcrop.2020.112419 |
[26] |
YUAN W Q, HAN X, WU Y, et al. Composition and antimicrobial activity of bamboo (phyllostachys heterocycla cv pubescens) leaf hydrosols[J]. Current Topics in Nutraceutical Research, 2020, 18(2):207-220.
doi: 10.37290/ctnr2641-452X.18:207-219 |
[27] |
HAI A M, AHMED M, AFZAL A, et al. Characterization and antibacterial property of Kapok fibers treated with chitosan/AgCl-TiO2 colloid[J]. The Journal of The Textile Institute, 2019, 110(1):100-104.
doi: 10.1080/00405000.2018.1466629 |
[28] | 张洁. 麻类纤维天然抑菌性能研究[D]. 上海:东华大学, 2018: 11. |
ZHANG Jie. Study on natural antibacterial properties of hempfiber[D]. Shanghai:Donghua University, 2018: 11. | |
[29] | 严小飞, 王茜, 周梦岚, 等. 木棉纤维抗菌性及抗菌机理分析[J]. 棉纺织技术, 2015, 43(3):15-18. |
YAN Xiaofei, WANG Qian, ZHOU Menglan, et al. Analysis of antibacterial property and antibacterial mechanism of kapok fiber[J]. Cotton Textile Technology, 2015, 43(3):15-18. | |
[30] | KIM J S. Natural dyeing properties and antibacterial activities of fabrics dyed with mordant: focused on Gardenia, Scutellaria, Houttuynia, Phellodendron[J]. The Journal of the Korea Society of Art and Design, 2015, 18(3):222-235. |
[31] |
PAWLOWAKA K A, HALASA R, DUDEK M K, et al. Antibacterial and anti-inflammatory activity of bistort (Bistorta officinalis) aqueous extract and its major components. Justification of the usage of the medicinal plant material as a traditional topical agent[J]. Journal of Ethnopharmacology, 2020, 260:113077.
doi: 10.1016/j.jep.2020.113077 |
[32] |
SHARMA P, WICHAPHON J, KLANGPETCH W. Antimicrobial and antioxidant activities of defatted Moringa oleifera seed meal extract obtained by ultrasound-assisted extraction and application as a natural antimicrobial coating for raw chicken sausages[J]. International Journal of Food Microbiology, 2020, 332:108770.
doi: 10.1016/j.ijfoodmicro.2020.108770 |
[33] |
AGHAMOHAMADI N, SANJANI N S, MAJIDI R F, et al. Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials[J]. Materials Science and Engineering: C, 2019, 94:445-452.
doi: 10.1016/j.msec.2018.09.058 |
[34] |
DUAN P, XU Q, ZHANG X, et al. Naturally occurring betaine grafted on cotton fabric for achieving antibacterial and anti-protein adsorption functions[J]. Cellulose, 2020, 27:6603-6615.
doi: 10.1007/s10570-020-03228-0 |
[35] |
BHUIYAN M A R, HOSSAIN M A, ZAKARIA M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2016, 25(2):334-342.
doi: 10.1007/s10924-016-0815-2 |
[36] |
BHUIYAN M A R, HOSSAIN M A, ZAKARIA M, et al. Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use[J]. Journal of Polymers and the Environment, 2017, 25(2):334-342.
doi: 10.1007/s10924-016-0815-2 |
[37] |
BENLTONFA S, MILED W, TRAD M, et al. Chitosan hydrogel-coated cellulosic fabric for medical end-use: antibacterial properties, basic mechanical and comfort properties[J]. Carbohydrate Polymers, 2020, 227:115352.
doi: 10.1016/j.carbpol.2019.115352 |
[38] | LIU Y, XIAO C, LI X, et al. Antibacterial efficacy of functionalized silk fabrics by radical copolymerization with quaternary ammonium salts[J]. Journal of Applied Polymer Science, 2016, 133(21):43450. |
[39] | 李丽, 顾嫒娟. 聚丙烯腈/季铵盐纳米抗菌纤维滤膜的研究[J]. 涂层与防护, 2019, 40(12):24-28,34. |
LI Li, GU Aijuan. Study on nanometer antimicrobial fiber membrane of polyacrylonitrile/quaternary ammonium salt[J]. Coating and Protection, 2019, 40(12):24-28,34. | |
[40] |
ZHANG Y, HE X, DING M, et al. Antibacterial and biocompatible cross-linked waterborne polyurethanes containing gemini quaternary ammonium salts[J]. Biomacromolecules, 2018, 19(2):279-287.
doi: 10.1021/acs.biomac.7b01016 |
[41] |
FAN X, YIN M, JIANG Z, et al. Antibacterial poly (3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts[J]. Polymers for Advanced Technologies, 2016, 27(12):1617-1624.
doi: 10.1002/pat.v27.12 |
[42] | 钱逢宜, 李蓉, 任学宏. 抗菌疏水棉织物的制备及性能研究[J]. 功能材料, 2020, 51(1):28-32. |
QIAN Fengyi, LI Rong, REN Xuehong. Preparation and properties of antibacterial and hydrophobic cotton fabrics[J]. Functional Materials, 2020, 51(1):28-32. | |
[43] | LUO G, XI G, WANG X, et al. Antibacterial N-halamine coating on cotton fabric fabricated using mist polymerization[J]. Journal of Applied Polymer Science, 2017, 134(22):44897. |
[44] |
LU Z, MENG M, JIANG Y, et al. UV-assisted in situ synjournal of silver nanoparticles on silk fibers for antibacterial applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 447:1-7.
doi: 10.1016/j.colsurfa.2014.01.064 |
[45] |
BARNABAS J, MIRAFTAB M, QINAND Y, et al. Evaluating the antibacterial properties of chitosan fibres embedded with copper ions for wound dressing applications[J]. Journal of Industrial Textiles, 2014, 44(2):232-244.
doi: 10.1177/1528083713483782 |
[46] |
ALSOHAIMI I H, NASSAR A M, ELNASR T A S. et al. A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: a potent photocatalytic and antibacterial activities[J]. Journal of Cleaner Production, 2020, 248:119274.
doi: 10.1016/j.jclepro.2019.119274 |
[47] |
NASKAR A, LEE S, LEE Y, et al. A new nano-platform of erythromycin combined with Ag nano-particle ZnO nano-structure against methicillin-resistant staphylococcus aureus[J]. Pharmaceutics, 2020, 12(9):841.
doi: 10.3390/pharmaceutics12090841 |
[48] |
TAN L Y, SIN L T, BEE S T, et al. Functionalization and mechanical properties of cotton fabric with ZnO nanoparticles for antibacterial textile application[J]. Solid State Phenomena, 2019, 290:292-297.
doi: 10.4028/www.scientific.net/SSP.290 |
[49] |
MENG M, HE H, XIAO J, et al. Controllable in situ synjournal of silver nanoparticles on multilayered film-coated silk fibers for antibacterial application[J]. Journal of Colloid Interface Science, 2015, 461:369-375.
doi: 10.1016/j.jcis.2015.09.038 |
[50] | 刘菁, 张建强, 邓苗. 沸石载银制备抗菌剂的研究[J]. 非金属矿, 2011, 34(2):22-24. |
LIU Jing, ZHANG Jianqiang, DENG Miao. Preparation of antibacterial agent by carrying silver in zeolite[J]. Non-Metallic Mines, 2011, 34(2):22-24. | |
[51] |
DU L, JIN C, CHENG Y, et al. Improvement of antibacterial activity of hydrothermal treated TC4 substrate through an in-situ grown TiO2/g-C3N4 Z-scheme heterojunction film[J]. Journal of Alloys and Compounds, 2020, 842:155612.
doi: 10.1016/j.jallcom.2020.155612 |
[52] |
LIU S, WEN B, JIANG X, et al. Enhanced photocathodic antifouling/antibacterial properties of polyaniline-Ag-N-doped TiO2 coatings[J]. Journal of Materials Science, 2020, 55:16255-16272.
doi: 10.1007/s10853-020-05170-9 |
[53] | DOUMBIA A S, VEZIN H, FERREIRA M, et al. Studies of polylactide/zinc oxide nanocomposites: influence of surface treatment on zinc oxide antibacterial activities in textile nanocomposites[J]. Journal of Applied Polymer Science, 2015, 132(17):41776. |
[54] |
RILDFA Y, SAFITRI R, AGUSTIEN A, et al. Enhancement of antibacterial capability of cotton textiles coated with TiO2-SiO2/chitosan using hydrophobization[J]. Journal of the Chinese Chemical Society, 2017, 64(11):1347-1353.
doi: 10.1002/jccs.2017.64.issue-11 |
[55] |
SAFFARI MR, KAMALI MR. Antibacterial property of PLA textiles coated by nano-TiO2 through eco-friendly low-temperature plasma[J]. International Journal of Clothing Science and Technology, 2016, 28(6):830-840.
doi: 10.1108/IJCST-12-2015-0139 |
[56] |
RILDA Y, DAMARA D, PUTRI Y E, et al. Pseudomonas aeruginosa antibacterial textile cotton fiber construction based on ZnO-TiO2 nanorods template[J]. Heliyon, 2020, 6(4):e03710.
doi: 10.1016/j.heliyon.2020.e03710 |
[57] |
XU Q, KE X, GE N, et al. Preparation of copper nanoparticles coated cotton fabrics with durable antibacterial properties[J]. Fibers and Polymers, 2018, 19(5):1004-1013.
doi: 10.1007/s12221-018-8067-5 |
[58] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11):102-108. |
JIANG Xingmao, LIU Qi, GUO Lin. Microstructure and antibacterial properties of silver-copper nanoparticles coated with silica[J]. Chinese Journal of Textile Science, 2020, 41(11):102-108. | |
[59] |
NOVOSELOV KS, GEIM AK, MOROZOV SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896 |
[60] |
NOVOSELOV K S, FAL V I, COLOMBO L, et al. A roadmap for grapheme[J]. Nature, 2012, 490(7419):192-200.
doi: 10.1038/nature11458 |
[61] | 张勇, 李桢. 石墨烯及氧化石墨烯在纺织领域的抗菌应用[J]. 棉纺织技术, 2020, 48(9):75-79. |
ZHANG Yong, LI Zhen. Antibacterial application of graphene and go in textile field[J]. Cotton Textile Technology, 2020, 48(9):75-79. | |
[62] | 高晶, 张俊, 赵泽阳, 等. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10):120-126. |
GAO Jing, ZHANG Jun, ZHAO Zeyang, et al. Effect of TiO2/SiO2 on antibacterial performance of polyester/cotton fabrics modified by graphene oxide[J]. Journal of Textile Research, 2019, 40(10):120-126. | |
[63] | 蒋佳佳, 卢小菊, 孟鸳, 等. 氧化石墨烯纳米银复合材料的制备及对大肠杆菌抑菌性能的研究[J]. 化工新型材料, 2019, 47(12):121-126. |
JIANG Jiajia, LU Xiaoju, MENG Yuan, et al. Preparation of go nano-silver composite and study on its antibacterial properties against Escherichia coli[J]. New Chemical Materials, 2019, 47(12):121-126. | |
[64] |
ZHAO J, DENG B, LV M, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013, 2(9):1259-1266.
doi: 10.1002/adhm.v2.9 |
[65] | 熊德鑫. 现代微生态学[M]. 北京: 中国科学技术出版社, 2000: 3. |
XIONG Dexin. Modern microecology[M]. Beijing: China Science & Technology Press, 2000: 3. | |
[66] | 熊德鑫. 功能性纺织品与人体皮肤的微生态平衡[J]. 针织工业, 2006, 8:13-18. |
XIONG Dexin. Microecological balance of functional textiles and human skin[J]. Knitting Industries, 2006, 8:13-18. | |
[67] | AEBI U, ANKLAM E, BAUN A, et al. Impact of engineered nanomaterials on health: considerations for benefit-risk assessment[M]. Belgium: Publications Office of the European Union, 2011: 63. |
[68] | MIKKELSEN S H, HANSEN E, CHRISTENSEN T B, et al. Survey on basic knowledge about exposure and potential environmental and health risks for selected nanomaterials[M]. Denmark: COWI A/S, 2011: 24. |
[1] | 陈香香, 吴婷, 周伟涛, 孙洋洋, 杜姗, 张晓莉. 双氧水/抗坏血酸引发甲基丙烯酸甲酯接枝改性锦纶6织物及其性能[J]. 纺织学报, 2021, 42(09): 131-136. |
[2] | 陈可, 张娣, 吉宜军, 乐荣庆, 苏旭中. 精梳涤纶条含量对涤纶针织物性能的影响[J]. 纺织学报, 2021, 42(09): 66-69. |
[3] | 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109. |
[4] | 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71. |
[5] | 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19. |
[6] | 高雪, 李政, 巩继贤, 李秋瑾, 李凤艳, 张健飞. 新型纺织用生物基抗菌整理剂的研究进展[J]. 纺织学报, 2020, 41(02): 187-192. |
[7] | 谢娇 王家俊 俞秋燕 KHOSO Nazakat Ali 赵佳佳. 碳纳米管/聚合物温差发电复合纺织材料的制备及其性能[J]. 纺织学报, 2018, 39(11): 50-55. |
[8] | 高党鸽 李亚娟 吕斌 马建中. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(08): 171-178. |
[9] | 刘慧慧 王云仪. 纸尿裤服用性能测评研究进展[J]. 纺织学报, 2018, 39(06): 175-182. |
[10] | 李静 王晓 邵伟 崔永珠 魏春艳. 改性活性染料对涤纶织物的紫外光引发接枝染色[J]. 纺织学报, 2017, 38(11): 91-96. |
[11] | 王佳 徐秀娟 马明波 周文龙. 天然棕色棉的抗菌性能[J]. 纺织学报, 2017, 38(03): 1-5. |
[12] | 方东根 沈雷 胡哲. 智能服装材料及其在安全性服装中的应用[J]. 纺织学报, 2015, 36(12): 158-164. |
[13] | 沈雷 方东根 童夏青. 安全性服装的设计模式[J]. 纺织学报, 2015, 36(05): 158-164. |
[14] | 潘志娟 朱思敏 欧佩玉 眭建华. PTT/绢丝混纺织物的风格及服用性能[J]. 纺织学报, 2014, 35(8): 163-0. |
[15] | 吴鲜鲜 俞涤美 张红霞 姚佳 康凌峰 祝成炎. 咖啡碳纤维混纺织物的性能[J]. 纺织学报, 2014, 35(7): 48-0. |
|