纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 104-111.doi: 10.13475/j.fzxb.20201002808

• 染整与化学品 • 上一篇    下一篇

还原染料在石墨毡电极上的直接电化学还原

杨卓, 王炜()   

  1. 东华大学 化学化工与生物工程学院, 上海 201620
  • 收稿日期:2020-10-20 修回日期:2021-06-19 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 王炜
  • 作者简介:杨卓(1983—),女,硕士。主要研究方向纺织品新型染色技术。

Direct electrochemical reduction of vat dyes on carbon felt electrodes

YANG Zhuo, WANG Wei()   

  1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
  • Received:2020-10-20 Revised:2021-06-19 Published:2021-09-15 Online:2021-09-27
  • Contact: WANG Wei

摘要:

针对还原染料的直接电化学还原存在不溶性染料和电极接触不充分而难以进行的难题,以石墨毡为工作电极,采用三电极体系,研究了还原黄3RT、还原绿FFB和还原橄榄绿B的电化学行为,并探讨了温度、电压、电流、电解质和染料浓度对直接电化学还原的影响,测试了电化学还原的电流效率和转化率。实验结果表明:还原染料可在石墨毡电极上直接进行电子得失;以石墨毡作为工作电极,可有效提高染料反应速度;提高温度可显著提高电化学反应速度;电流强度和电压过大,会增强析氢副反应,进而影响染料还原速度;在60 ℃,-1.0 V条件下恒压电解,染料可在10~40 min内完成还原,转化率可达90%以上,电流效率在50%~60%之间。

关键词: 直接电化学, 还原染料, 石墨毡, 电流效率

Abstract:

The direct electrochemical reduction of vat dyes is difficult to carry out due to poor contact between insoluble vat dyes and the electrodes. In order to solve this problem, using graphite felt as the electrode, under a three-electrode system, the electrochemical behaviors of Vat Yellow 3RT, Vat Green FFB and Vat Olive Green B were studied, and the effects of temperature, voltage, current, electrolyte and dye concentration on direct electrochemical reduction were explored, the current efficiency and conversion rate of electrochemical reduction were also tested. The results show that vat dyes could be directly reduced into leuco. Using carbon felt cathode as electrode direct electrochemical reduction rate could be effectively improved. Electrochemical reduction rate increases significantly with the increase of temperature. At excessive level of negative potential or current, hydrogen evolution begins to occur and becomes the main rection, which affects the rate of dye reduction. Under the conditions of 60 ℃ and -1.0 V, the vat dyes could be reduced within 10 min to 40 min, and the conversion rate could reach more than 90%, and the current efficiency is between 50% and 60%.

Key words: direct electrochemistry, vat dyes, carbon felt, current efficiency

中图分类号: 

  • TS193.5

图1

0.2 g/L染料在0.5 mol/L的NaOH溶液中的循环伏安曲线"

图2

还原染料电化学和化学还原后的紫外-可见光谱曲线"

图3

还原温度对电化学还原速度的影响"

图4

还原电压对电化学还原速度的影响"

表1

不同电压下电解时染料的转化率及电流效率"

电压/V 还原黄3RT 还原橄榄绿B 还原绿FFB
还原时间/min 转化率/% 电流效率/% 还原时间/min 转化率/% 电流效率/% 还原时间/min 转化率/% 电流效率/%
-0.8 18 88.7 66.1 30 95.6 51.3 80 87.5 44.6
-1.0 12 87.5 58.5 10 99.1 53.7 35 91.3 50.8
-1.2 12 87.3 35.6 10 98.0 35.5 100 90.6 3.9
-1.4 12 87.5 6.8 180 80.6 0.1

图5

还原橄榄绿B不同电压还原后的紫外-可见吸光度曲线和染色织物的反射率"

图6

电流强度对电化学还原速度的影响"

表2

不同电流强度下电解染料的转化率及电流效率"

电流强度/mA 还原黄3RT 还原橄榄绿B 还原绿FFB
还原时间/min 转化率/% 电流效率/% 还原时间/min 转化率/% 电流效率/% 还原时间/min 转化率/% 电流效率/%
10 15 93.5 33.8 10 94.2 25.2 100 82.4 2.2
5 20 94.4 51.2 15 96.1 34.4 60 87.7 8.0
3 40 95.0 49.2 25 98.0 35.0 60 87.7 13.3
1 110 94.5 47.0 60 95.9 42.9 70 91.5 35.7

图7

电解质浓度相同时氢氧化钠浓度对染料电化学还原速度的影响"

图8

电解质浓度不同时氢氧化钠浓度对染料电化学还原速度的影响"

图9

染料质量浓度对染料电化学还原速度的影响"

[1] ROESSLERA, JIN X. State of the art technologies and new electrochemical methods for the reduction of vat dyes[J]. Dyes and Pigments, 2003, 59:223-235.
doi: 10.1016/S0143-7208(03)00108-6
[2] KULANDAINATHAN M A, PATIL K, MUTHUKUMARANA A, et al. Review of the process development aspects of electrochemical dyeing: its impact and commercial applications[J]. Coloration Technology, 2007, 123(3):143-151.
doi: 10.1111/cte.2007.123.issue-3
[3] BOZIC M, KOKOL V. Ecological alternatives to the reduction and oxidation processes in dyeing with vat and sulphur dyes[J]. Dyes and Pigments, 2008, 76(2):299-309.
doi: 10.1016/j.dyepig.2006.05.041
[4] 彭勇刚, 陈大俊, 纪俊玲, 等. 还原染料电化学还原技术研究进展[J]. 染整技术, 2011, 33(2):7-10, 25.
PENG Yonggang, CHEN Dajun, JI Junling, et al. Research progress of electrochemical reduction technology of vat dyes[J]. Textile Dyeing and Finishing Journal, 2011, 33(2):7-10, 25.
[5] BECHTOLD T, TURCANU A. Fe3+-D-gluconate and Ca2+-Fe3+-D-gluconate complexes as mediators for indirect cathodic reduction of vat dyes: cyclic voltammetry and batch electrolysis experiments[J]. J Appl Electrochem, 2004, 34(12):1221-1227.
doi: 10.1007/s10800-004-1707-z
[6] 汪康康, 李晓燕, 姚继明. 铁盐媒介对靛蓝电化学还原体系的影响[J]. 纺织学报, 2020, 40(1):75-79, 87.
WANG Kangkang, LI Xiaoyan, YAO Jiming. Effect of different iron salt media on indigo electrochemical reduction system[J]. Journal of Textile Research, 2020, 40(1):75-79, 87.
doi: 10.1177/004051757004000111
[7] YI C, TAN X, BIE B, et al. Practical and environment-friendlyindirect electrochemical reduction of indigo and dyeing[J]. Scientific Reports, 2020, 10:4927.
doi: 10.1038/s41598-020-61795-5
[8] BECHTOLD T, TURCANU A. Electrochemical reduction in vat dyeing: greener chemistry replaces traditional processes[J]. J Clean Prod, 2009, 17(18):1669-1679.
doi: 10.1016/j.jclepro.2009.08.004
[9] ROESSLER A, CRETTENAND D, DOSSENBACH O, et al. Direct electrochemical reduction of indigo[J]. Electrochim Acta, 2002, 47(12):1989-1995.
doi: 10.1016/S0013-4686(02)00028-2
[10] ROESSLER A, CRETTENAND D. Direct electrochemical reduction of vat dyes in a fixed bed of graphite granules[J]. Dyes and Pigments, 2004, 63:29-37.
doi: 10.1016/j.dyepig.2004.01.005
[11] ROESSLERA, CRETTENAND D, DOSSENBACH O, et al. Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules[J]. Journal of Applied Electrochemistry, 2003, 33:901-908.
doi: 10.1023/A:1025876114390
[12] YANG Z, SHEN W, WANG W, et al. Direct electrochemical reduction and dyeing properties of CI Vat Yellow 1 using carbon felt electrode[J]. Dyes and Pigments, 2021, 184:1-9.
[13] APUL O G, WANG Q L, ZHOU Y, et al. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon[J]. Water Res, 2013, 47(4):1648-1654.
doi: 10.1016/j.watres.2012.12.031
[14] GUIN P S, DAS S, MANDAL P C. Electrochemical reduction of sodium 1,4-dihydroxy-9,10-anthraquinone-2-sulphonate in aqueous and aqueous aimethyl formamide mixed solvent: a cyclic voltammetric study[J]. Int J Electrochem Sci, 2008, 3(9):1016-1028.
[15] GUIN P S, DAS S, MANDAL P C. Sodium 1, 4-dihydroxy-9, 10-anthraquinone-2-sulphonate interacts with calf thymus DNA in a way that mimics anthracycline antibiotics: an electrochemical and spectroscopic study[J]. J Phys Org Chem, 2010, 23(6):477-482.
doi: 10.1002/poc.1624
[16] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854.
doi: 10.1038/nmat2297
[1] 樊增禄 蔡信彬 李庆. Fe3+-Ca2+-酒石酸配合物在还原染料间接电化学还原染色中的应用[J]. 纺织学报, 2013, 34(10): 84-0.
[2] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82-86.
[3] 张辉;张建春. 棉及涤棉混纺织物近红外迷彩伪装[J]. 纺织学报, 2007, 28(3): 60-63.
[4] 高树珍. 超声波在大麻织物染色中的应用[J]. 纺织学报, 2006, 27(4): 95-97.
[5] 周秋宝;郑今欢;邵建中. 还原染料蚕丝织物拔染印花[J]. 纺织学报, 2006, 27(2): 87-91.
[6] 张辉;张建春. 棉织物还原染料染色及近红外伪装性能[J]. 纺织学报, 2005, 26(5): 4-7.
[7] 张治国;尹红;陈志荣. 还原/阳离子染料用匀染剂研究进展[J]. 纺织学报, 2005, 26(2): 146-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!