纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 99-106.doi: 10.13475/j.fzxb.20201004308

• 染整与化学品 • 上一篇    下一篇

光活化过硫酸钾体系下直接蓝15降解动力学及其降解机制

胡倩, 阳海(), 李鑫, 陈聘婷, 陈镇, 易兵   

  1. 湖南工程学院 环境催化与废弃物再生化湖南省重点实验室, 湖南 湘潭 411104
  • 收稿日期:2020-10-21 修回日期:2021-07-12 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 阳海
  • 作者简介:胡倩(1992—),女,实验师,硕士。主要研究方向为纺织化学与染整工程。
  • 基金资助:
    湖南省教育厅项目(18C0698);湖南省教育厅项目(19K024);湖南省杰出青年基金项目(2021JJ10001);湖南省科技人才托举工程项目(2020TJ-Q12);国家自然科学基金项目(21772035)

Degradation kinetics and mechanism of Direct Blue 15 in photoactivated potassium persulfate system

HU Qian, YANG Hai(), LI Xin, CHEN Pinting, CHEN Zhen, YI Bing   

  1. Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2020-10-21 Revised:2021-07-12 Published:2021-10-15 Online:2021-10-29
  • Contact: YANG Hai

摘要:

为探索双偶氮染料直接蓝15(DB15)在水中的降解可行性及在活性氧物种作用下可能的反应位点和迁移转化机制,利用紫外光活化过硫酸钾(UV/K2S2O8)技术研究了DB15在活性氧物种作用下的降解动力学和反应机制。结果表明,双偶氮染料DB15在UV/K2S2O8体系中降解符合假一级动力学,其动力学常数速率为0.010 7 min-1, K2S2O8质量浓度、底物初始浓度和反应温度对其降解动力学影响显著。利用气相色谱-质谱法对DB15在UV/K2S2O8体系下降解中间产物进行初步的分离与分析,并结合DB15前线电子云密度(FEDs)的理论计算结果对其降解途径进行推导。研究发现:DB15在硫酸根自由基($SO_4^-$·)、羟基自由基(·OH)等活性氧物种作用下N11、N24、N41、N42和C28等活性位点易被自由基直接攻击或者发生电子转移反应,从而引起DB15分子中N=N和C—N键断裂,然后中间产物再进一步羟基化是其主要的降解途径。

关键词: 直接蓝15, 光活化, 降解动力学, 机制, 活性氧物种

Abstract:

In order to explore the degradation feasibility of bisazo dye Direct Blue 15 (DB15) and its transformation mechanism under attack of reactive oxygen species (ROSs), the degradation kinetics and mechanism of DB15 was studied in UV/K2S2O8 system. The results show that the degradation of the bisazo dye DB15 in the UV/K2S2O8 system conforms to pseudo-first-order kinetics, with a kinetic constant rate of 0.010 7 min-1. Different K2S2O8 concentration, initial substrate concentration and reaction temperature have significant effects on its degradation kinetics. Finally, the degradation intermediates of DB15 were identified by gas chromatography-mass spectrometry. Combined with the frontier electron densities (FEDs) of DB15, the positions of N11, N24, N41, N42, and C28 are likely to be attacked or occurred the single electron transfer under the attack of $SO_4^-$·, ·OH and so on, which resulted in the cleavage of N=N and C—N bonds and further hydroxylation and mineralization of the degradation intermediates under the attack of the ROSs.

Key words: Direct Blue 15, photo-activated, degradation kinetics, mechanism, reactive oxygen specie

中图分类号: 

  • X131

图1

光源及反应装置示意图 1—磁力搅拌器;2—反应容器;3—灯源冷却装置;4—光源。"

图2

DB15在不同体系中的降解曲线及在UV/K2S2O8体系-ln(c/c0)与时间的关系"

图3

K2S2O8质量浓度对DB15的降解曲线以及对DB15降解速率的影响"

图4

底物初始浓度对DB15的降解曲线以及对DB15降解速率的影响"

图5

不同反应温度对DB15的降解曲线和底物初始浓度对DB15降解速率的影响"

图6

UV/K2S2O8体系中自由基的EPR图谱"

图7

DB15在UV/K2S2O8体系中降解产物的总离子流(TIC)图谱"

表1

DB15在UV/K2S2O8体系中可能的降解中间产物"

降解产物
编号
质荷比
m/z
保留时间/
min
质谱主要碎片的质
荷比m/z
可能的降解产物
名称
谱库相似
度/%
萃取剂
P1 111 9.3 55,83,84 对苯二酚 81 EA
P2 192 18.6 152,165,179 多羟基取代产物 80 EA
P3 219 22.1 97,165 联苯四醇 83 EA
P4 139 23.6 57,97 4-氨基-3-甲氧基苯酚 87 EA
P5 155 24.9 83,141 4-硝基苯-1,3-二醇 85 EA
P6 331 25.4 207,279,281 N N键断裂产物 86 EA
P7 126 27.8 59,83 1,2,4-苯三醇 88 EA
P8 112 5.4 71,84,99 邻二苯酚 90 DCM
P9 191 13.3 115,163,173 7-氨基萘-1,3,5-三醇 87 DCM
P10 223 17.4 83,111,149 7-硝基萘-1,3,5-三醇 93 DCM
P11 125 23.6 57,71,111 4-氨基苯-1,3-二醇 80 DCM

表2

DB15的前线电子云密度(FDEs)计算结果"

原子序号 2 FE D HOMO 2 2 FED LUMO 2 FED HOMO 2+ FE D LUMO 2 原子序号 2 FE D HOMO 2 2 FE D LUMO 2 FE D HOMO 2+ FE D LUMO 2
C1 0.128 6 0.046 9 0.087 8 C32 0.002 3 0.007 8 0.005 1
C2 0.076 2 0.031 0 0.053 6 C33 0.023 1 0.040 0 0.031 6
C3 0.014 9 0.059 6 0.037 3 C34 0.016 2 0.028 3 0.022 2
C4 0.000 8 0.119 7 0.060 2 C35 0.004 5 0.018 6 0.011 5
C5 0.152 5 0.000 3 0.076 4 C36 0.032 9 0.048 2 0.040 6
C6 0.037 1 0.103 7 0.070 4 C37 0.006 5 0.020 9 0.013 7
C7 0.082 2 0.105 3 0.093 7 C38 0.012 7 0.025 3 0.019 0
C8 0.165 0 0.075 4 0.120 2 O39 0.001 4 0.002 5 0.001 9
C9 0.015 9 0.102 5 0.059 2 C40 0.000 5 0.004 6 0.002 6
C10 0.105 3 0.001 8 0.053 5 N41 0.006 4 0.036 5 0.121 4
N11 0.035 7 0.210 2 0.123 0 N42 0.015 0 0.045 3 0.130 2
O12 0.051 5 0.024 3 0.037 9 C43 0.010 3 0.025 2 0.017 7
N13 0.148 5 0.012 2 0.080 4 C44 0.000 6 0.024 1 0.012 4
S14 0.000 3 0.002 7 0.001 5 C45 0.006 9 0.001 1 0.004 0
O15 0.001 1 0.005 8 0.003 5 C46 0.002 5 0.020 9 0.011 7
O16 0.001 4 0.004 9 0.003 1 C47 0.000 3 0.019 0 0.009 6
O17 0.001 3 0.001 5 0.001 4 C48 0.010 3 0.021 6 0.016 0
S19 0.000 3 0.004 2 0.002 2 C49 0.002 1 0.004 7 0.003 4
O20 0.001 4 0.001 7 0.001 5 C50 0.003 8 0.026 4 0.015 1
O21 0.002 5 0.007 4 0.004 9 C51 0.001 6 0.004 0 0.002 8
O22 0.000 8 0.004 4 0.002 6 C52 0.003 9 0.009 9 0.006 9
N24 0.071 9 0.247 2 0.159 6 O53 0.007 3 0.004 7 0.006 0
C25 0.058 0 0.080 8 0.069 4 N54 0.000 8 0.000 6 0.000 7
C26 0.016 8 0.106 5 0.061 7 S55 0.000 0 0.000 8 0.000 4
C27 0.025 6 0.012 2 0.018 9 O56 0.000 0 0.000 5 0.000 2
C28 0.050 8 0.121 8 0.086 3 O57 0.000 0 0.000 7 0.000 4
C29 0.006 0 0.045 8 0.025 9 O58 0.000 1 0.000 2 0.000 1
C30 0.029 9 0.087 0 0.058 5 S60 0.000 0 0.001 2 0.000 6
C31 0.010 4 0.005 8 0.008 1 O61 0.000 2 0.001 8 0.001 0

图8

DB15在UV/K2S2O8体系下可能的光催化途径"

[1] KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent:a review[J]. Journal of Environmental Management, 2013, 128:949-963.
doi: 10.1016/j.jenvman.2013.06.043
[2] KURTANU, AMIR M, BAYKAL A, et al. Magnetically recyclable Fe3O4@His@Cuu nanocatalyst for degradation of Azo dyes[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(3):2548-2556.
doi: 10.1166/jnn.2016.11707
[3] LIU S H, FENG X J, GU F, et al. Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor[J]. Chemosphere, 2017, 186:287-294.
doi: 10.1016/j.chemosphere.2017.08.001
[4] PILLAI I M, GUPTA A K, TIWARI M. Multivariate optimization for electrochemical oxidation of methyl orange: pathway identification and toxicity analysis[J]. Journal of Envirnmental Science & Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2014, 50(3):301-310.
[5] WANG X, CHENG X, SUN D, et al. Fate and transformation of naphthylaminesulfonic azo dye reactive black 5 during wastewater treatment process[J]. Environmental Science and Pollution Research International, 2014, 21(8):5713-5723.
doi: 10.1007/s11356-014-2502-y
[6] MENG X, LIU G, ZHOU J, et al. Effects of redox mediators on azo dye decolorization by shewanella algae under saline condi-tions[J]. Bioresour Technology, 2014, 151:63-68.
doi: 10.1016/j.biortech.2013.09.131
[7] 王晨曦, 万金泉, 马邕文, 等. 负载型颗粒活性炭催化过硫酸钠氧化降解橙黄G[J]. 环境工程学报, 2015, 9(1):213-218.
WANG Chenxi, WAN Jinquan, MA Yongwen, et al. Degradation of orange G catalyzed by Fe/GAC in the presence of persul-fate[J]. Chinese Journal of Environmental Engineering, 2015, 9(1):213-218.
[8] 陈家斌, 魏成耀, 房聪, 等. 碳纳米管活化过二硫酸盐降解偶氮染料酸性橙7[J]. 中国环境科学, 2016, 36(12):3618-3624.
CHEN Jiabin, WEI Chengyao, FANG Cong, et al. Decolorization of acid orange 7 by persulfate activated by carbon nanotube[J]. China Environmental Science, 2016, 36(12):3618-3624.
[9] 王森, 程赛鸽, 肖雪莉, 等. Fe2+活化过硫酸盐对市政污泥EPS性能的影响[J]. 环境工程学报, 2019, 13(9):2243-2249.
WANG Sen, CHENG Saige, XIAO Xueli, et al. Effect of Fe2+ activated persulfate on EPS properties of sewage sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(9):2243-2249.
[10] WANG Z Y, SHAO Y S, GAO N Y, et al. Degradation kinetic of dibutyl phthalate(DBP) by sulfate radical and hydroxyl radical-based advanced oxidation process in UV/persulfate system[J]. Separation and Purification Technology, 2018, 195:92-100.
doi: 10.1016/j.seppur.2017.11.072
[11] 徐鹏飞, 郭怡秦, 王光辉, 等. 紫外活化过硫酸盐对甲基橙脱色处理实验研究[J]. 环境工程, 2017, 35(11):58-61.
XU Pengfei, GUO Yiqin, WANG Guanghui, et al. Experimental study on UV-activated presulfate for decolorization of methyl or wastewater[J]. Environmental Engineering, 2017, 35(11):58-61.
[12] 范星, 唐玉朝, 姚顺顺. 紫外-活性炭协同活化过硫酸氢钾对罗丹明B的降解[J]. 环境化学, 2018, 37(12):2711-2720.
FAN Xing, TANG Yuchao, YAO Shunshun. Degradation of Rhodamine B by peroxymonosulfate synergistically activated by UV/activated carbon[J]. Environmental Chemistry, 2018, 37(12):2711-2720.
[13] ZHANG L L, DING W, QIU J T, et al. Modeling and optimization study on sulfumethoxazole degradation by electrochemically activated persulfate process[J]. Journal of Cleaner Production, 2018, 197:297-305.
doi: 10.1016/j.jclepro.2018.05.267
[14] 冯俊生, 姚海详, 蔡晨, 等. 微生物染料电池电活化过硫酸盐降解甲基橙偶氮染料[J]. 环境科学研究, 2019, 32(5):913-920.
FENG Junsheng, YAO Haixiang, CAI Chen, et al. Microbial fuel cell electro-activated persulfate to degrade methyl orange azo dye[J]. Research of Environmental Sciences, 2019, 32(5):913-920.
[15] ZHANG Y X, LIU H L, XIN Y J, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019, 358:1446-1453.
doi: 10.1016/j.cej.2018.10.157
[16] 朱淳, 徐江流, 申哲民, 等. 热活化过硫酸钠对偶氮染料的降解规律[J]. 净水技术, 2019, 38(7):108-114.
ZHU Chun, XU Jiangliu, SHEN Zhemin, et al. Degradation rule of azo dyes by thermally activated sodium persulfate[J]. Water Purification on Technology, 2019, 38(7):108-114.
[17] GAO F, LI Y J, XIANG B. Degradation of bisphenol a through transition metals activating persulfate process[J]. Ecotoxicology and Environmental Safety, 2018, 15:239-247.
[18] 郭婧怡, 马扬帆, 杨绍贵, 等. 切割钢渣活化过硫酸盐降解偶氮类染料酸性红73[J]. 环境科学学报, 2019, 39(8):2550-2558.
GUO Jingyi, MA Yangfan, YANG Shaogui, et al. Degradation of acid red 73 by persulfate activated by steel slag[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2550-2558.
[19] 杨珂, 唐琪, 杨晓丹, 等. 铁酸铜非均相活化过硫酸盐降解罗丹明B[J]. 中国环境科学, 2019, 39(9):3761-3769.
YANG Ke, TANG Qi, YANG Xiaodan, et al. Degradation of rhodamine B by heterogeneous activation of persulfate with copper ferrate[J]. China Environmental Science, 2019, 39(9):3761-3769.
[20] 唐玉朝, 尹汉雄, 黄健, 等. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5):1071-1078.
TANG Yuchao, YIN Hanxiong, HUANG Jian, et al. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5):1071-1078.
[21] 钟欣, 吴迪, 张凯欣, 等. 光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ[J]. 环境化学, 2019, 38(12):2860-2868.
ZHONG Xin, WU Di, ZHANG Kaixin, et al. Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ[J]. Environmental Chemistry, 2019, 38(12):2860-2868.
[22] SUN J H, SHI S H, LE Y F, et al. Fenton oxidative decolorization of the azo dye direct blue 15 in aqueous solution[J]. Chemical Engineering Journal, 2009, 15(3):680-683.
[23] 胡倩, 阳海, 陶文杰, 等. 酸性红37在UV/K2S2O8体系中降解动力学和转化机制[J]. 环境化学, 2019, 38(12):2869-2878.
HU Qian, YANG Hai, TAO Wenjie, et al. Degradation kinetic optimization and mechanistic investigation of acid red 37 in UV/K2S2O8 system[J]. Environmental Chemistry, 2019, 38(12):2869-2878.
[24] 易兵, 胡倩, 杨辉琼, 等. 酸性红(AR37)光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(6):81-88.
YI Bing, HU Qian, YANG Huiqiong, et al. Degradation kinetic optimization and mechanistic investigation of Monoazo Acid Red 37 in photocatalytic system[J]. Journal of Textile Research, 2018, 39(6):81-88.
[25] YANG H, ZHUANG S, HU Q, et al. Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2O82- system: reaction kinetics, degradation mechanism and acute toxicity[J]. Chemical Engineering Journal, 2018, 339:32-41.
doi: 10.1016/j.cej.2018.01.106
[26] YANG H, ZHOU W C, YANG L P, et al. Flutriafol degradation in Ag +/S2O82- aqueous system: an experimental and theoretical investigation[J]. Environment Protection Engineering, 2018, 44(2):57-72.
[27] 庄帅, 阳海, 安继斌, 等. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019, 40(11):131-139.
ZHUANG Shuai, YANG Hai, AN Jibin, et al. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals[J]. Journal of Textile Research, 2019, 40(11):131-139.
[28] YANG H, WEI H Q, HU L T, et al. Mechanism for the photocatalytic transformation of s-trizine herbicides by ·OH radicals over TiO2[J]. Chemical Engineering Journal, 2016, 300:209-216.
doi: 10.1016/j.cej.2016.04.099
[1] 张文欢 李俊. 低热辐射环境消防服系统内热传递机制的研究进展[J]. , 2021, 42(10): 0-0.
[2] 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198.
[3] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[4] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
[5] 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186.
[6] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[7] 张思宇, 余莉, 贾贺, 刘鑫. 柔性伞衣织物的自由变形折叠建模及其充气机制研究[J]. 纺织学报, 2021, 42(07): 108-114.
[8] 孙晨颖, 王文庆, 靳高岭, 王锐. 热塑性聚合物阻燃抗熔滴研究现状[J]. 纺织学报, 2021, 42(06): 171-179.
[9] 张倩玉, 秦志刚, 阎若思, 贾立霞. 剪切增稠液/纤维复合材料防弹性能的研究进展[J]. 纺织学报, 2021, 42(06): 180-188.
[10] 于金超, 姬洪, 陈康, 甘宇. 聚醚酯/聚对苯二甲酸丁二醇酯并列复合纤维的制备及其性能[J]. 纺织学报, 2021, 42(04): 42-47.
[11] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[12] 潘佳俊, 夏兆鹏, 张海宝, 卢杨, 赵吉林, 王学农, 王亮, 刘雍. 牦牛绒过氧化氢/过硫酸铵脱色体系工艺优化及其机制[J]. 纺织学报, 2021, 42(04): 101-106.
[13] 杨婷婷, 高远博, 郑毅, 王学利, 何勇. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(04): 1-7.
[14] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[15] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!