纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 179-186.doi: 10.13475/j.fzxb.20201004708
周园园1,2,3, 郑煜铭1,2, 吴小琼1,2, 邵再东1,2()
ZHOU Yuanyuan1,2,3, ZHENG Yuming1,2, WU Xiaoqiong1,2, SHAO Zaidong1,2()
摘要:
传统的纳米粉体光催化剂在使用过程中极易团聚,易流失,且难以分离回收,存在二次污染风险,光催化作为一种可高效利用太阳能进行污染物降解的高级氧化技术,具有环境友好的特点。首先介绍了单一组分静电纺纳米纤维光催化剂的研究进展及其存在的问题;在此基础上重点综述了增强改性静电纺纳米纤维光催化剂性能的方法,主要包括元素掺杂、表面贵金属负载、半导体复合、染料敏化以及接枝共轭聚合物,归纳总结了各种方法的合成手段、原理、优缺点和改进的方向。最后提出:未来应在开发具有高比表面积、高电子-空穴分离效率的新型光催化材料,以及具有多功能协同作用和高力学强度的新型光催化剂方面继续进行深入研究。
中图分类号:
[1] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
doi: 10.1038/238037a0 |
[2] |
HAN G Q, JIN Y H, BURGESSR A, et al. Visible-light-driven valorization of biomass inter-mediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets[J]. J Am Chem Soc, 2017, 139(44):15584-15587.
doi: 10.1021/jacs.7b08657 |
[3] |
CHU K H, YE L Q, WANG W, et al. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4with simultaneous dye degradation under visible-light irradiation[J]. Chemosphere, 2017, 183:219-228.
doi: 10.1016/j.chemosphere.2017.05.112 |
[4] |
LIN Z Y, LI L H, YU L L, et al. Dual-functional photocatalysis for hydrogen evolution from industrial wastewaters[J]. Phys Chem Chem Phys, 2017, 19:8356-8362.
doi: 10.1039/C7CP00250E |
[5] |
TAKEDA H, OHASHI K, SEKINE A, et al. Photocatalytic CO2 reduction using Cu (I) photosensitizers with a Fe(II) catalyst[J]. J Am Chem Soc, 2016, 138(13):4354-4357.
doi: 10.1021/jacs.6b01970 |
[6] |
PAN Y X, YOU Y, XIN S, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts[J]. J Am Chem Soc, 2017, 139(11):4123-4129.
doi: 10.1021/jacs.7b00266 |
[7] |
KUEHNEL M F, ORCHARD K L, DALLE K E, et al. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals[J]. J Am Chem Soc, 2017, 139(21):7217-7223.
doi: 10.1021/jacs.7b00369 |
[8] |
SCANDURA G, CIRIMINNA R, OZER L Y, et al. Antifouling and photocatalytic antibacterial activity of the aquasun coating in seawater and related media[J]. ACS Omega, 2017, 2:7568-7575.
doi: 10.1021/acsomega.7b01237 |
[9] |
NAGAY B E, DINI C, CORDEIRO J M, et al. Visible-light-induced photocatalytic and antibacterial activity of TiO2codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases[J]. ACS Appl Mater Inter, 2019, 11(20):18186-18202.
doi: 10.1021/acsami.9b03311 |
[10] | ZHANG C, GU Y N, TENG G X, et al. Designation of double-shell Ag/AgCl/G-ZnFe2O4 nanocube with enhanced light absorption and superior photocatalytic antibacterial activity[J]. ACS Appl Mater Inter, 2020, 12(26):29883-29898. |
[11] |
MATTHEWS RW. Photooxidation of organic material in aqueous suspensions of titanium dioxide[J]. Water Res, 1986, 20(5):569-578.
doi: 10.1016/0043-1354(86)90020-5 |
[12] |
EL-MORSI TM, BUDAKOWSKI WR, ABD-EL-AZIZ AS, et al. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO2: areaction of adsorbed chlori-nated alkane with surface hydroxyl radicals[J]. Environ Sci Technol, 2000, 34(6):1018-1022.
doi: 10.1021/es9907360 |
[13] |
ESPLUGAS S, GIMENEZ J, CONTRERAS S, et al. Comparison of different advanced oxidation processes for phenol degradation[J]. Water Res, 2002, 36(4):1034-1042.
doi: 10.1016/S0043-1354(01)00301-3 |
[14] |
DONG H R, ZENG G M, TANG L, et al. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures[J]. Water Res, 2015, 79:128-146.
doi: 10.1016/j.watres.2015.04.038 |
[15] |
KU Y, JUNG I L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Water Res, 2001, 35(1):135-142.
doi: 10.1016/S0043-1354(00)00098-1 |
[16] |
KUMAR V, WANCHOO R K, TOOR A P. Photocatalytic reduction and crystallization hybrid system for removal and recovery of lead (Pb)[J]. Ind Eng Chem Res, 2021, 60(24):8901-8910.
doi: 10.1021/acs.iecr.1c01169 |
[17] |
SELLI E, GIORGI A D, BIDOGLIO G. Humic acid-sensitized photoreduction of Cr(VI) on ZnO particles[J]. Environ Sci Technol, 1996, 30(2):598-604.
doi: 10.1021/es950368+ |
[18] |
JACOBY W A, BLAKE D M, NOBLERD, et al. Kinetics of the oxidation of trichloroethylene in air via hetero-geneous photocatalysis[J]. J Catal, 1995, 157(1):87-96.
doi: 10.1006/jcat.1995.1270 |
[19] |
OBEE T N. Photooxidation of sub-parts-per-million tolu-ene and formaldehyde levels on titania using a glass-plate reactor[J]. Environ Sci Technol, 1996, 30(12):3578-3584.
doi: 10.1021/es9602713 |
[20] |
WANG L L, ZHAO Y C, ZHANG J Y. Photochemical removal of SO2 over TiO2based nanofibers by a dry photocatalytic oxidation process[J]. Energ Fuel, 2017, 31(9):9905-9914.
doi: 10.1021/acs.energyfuels.7b01514 |
[21] | SEREDYCH M, MABAYOJE O, BANDOSZ T J. Interactions of NO2 with zinc (hydr)oxide/graphene phase composites: visible light enhanced surface reactivity[J]. J Phys Chem, 2012, 116(3):2527-2535. |
[22] |
NGUYEN S N, TRUONG T K, YOU S J, et al. Investigation on photocatalytic removal of NO under visible light over Cr-doped ZnO nanoparticles[J]. ACS Omega, 2019, 4(7):12853-12859.
doi: 10.1021/acsomega.9b01628 |
[23] |
WANG S L, LI G S, LEUNG M K H, et al. Controlling charge transfer in quantum-size titania for photocatalytic applications[J]. Appl Catal B: Environ, 2017, 215(5):85-92.
doi: 10.1016/j.apcatb.2017.05.043 |
[24] |
CAO T P, LI Y J, WANG C H, et al. A facile in situ hydrothermal method to SrTiO3/TiO2 nanofiber heterostructures with high photocatalytic activity[J]. Langmuir, 2011, 27(6):2946-2952.
doi: 10.1021/la104195v |
[25] |
GAO F, LU Q Y, PANG H, et al. Sandwich-type polymer nanofiber structure of poly(furfuryl alcohol): an effective template for ordered porous films[J]. J Phys Chem B, 2009, 113(37):12477-12481.
doi: 10.1021/jp9048499 |
[26] |
BAE S Y, SEO H W, PARK J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition[J]. J Phys Chem B, 2004, 108(17):5206-5210.
doi: 10.1021/jp036720k |
[27] |
SANKAR S S, KARTHICK K, SANGEETHA K, et al. Transition-metal-based zeolite imidazolate framework nanofibers via an electrospinning approach: a review[J]. ACS Omega, 2020, 5:57-67.
doi: 10.1021/acsomega.9b03615 |
[28] |
DING Z W, SALIM A, ZIAIE B. Selective nanofiber deposition through field-enhanced electrospinning[J]. Langmuir, 2009, 25(17):9648-9652.
doi: 10.1021/la901924z |
[29] |
ZHAO G, LIU S W, LU Q F, et al. Controllable synjournal of Bi2WO6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances[J]. Ind Eng Chem Res, 2012, 51:10307-10312.
doi: 10.1021/ie300988z |
[30] |
ZHAN S H, CHEN D R, JIAO X L, et al. Long TiO2hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties[J]. J Phys Chem B, 2006, 110:11199-11204.
doi: 10.1021/jp057372k |
[31] |
LIU G S, LIU S W, LU Q F, et al. Synjournal of mesoporous BiPO4 nanofibers by electrospinning with enhanced photocatalytic performances[J]. Ind Eng Chem Res, 2014, 53(33):13023-13029.
doi: 10.1021/ie4044357 |
[32] |
MALI S S, KIM H, JANG W Y, et al. Novel synjournal and characterization of mesoporous ZnO nanofibers by electrospinning technique[J]. ACS Sustainable Chem Eng, 2013, 1(9):1207-1213.
doi: 10.1021/sc400153j |
[33] |
SONG J, WANG X Q, YAN J H, et al. Soft Zr-doped TiO2nanofibrous membranes with enhanced photocatalytic activity for water purification[J]. Sci Rep, 2017, 7:1636-1648.
doi: 10.1038/s41598-017-01969-w |
[34] |
XIAO G, HUANG X, LIAO X P, et al. One-pot facile synjournal of cerium-doped TiO2 mesoporous nanofibers using collagen fiber as the biotemplate and its application in visible light photocatalysis[J]. J Phys Chem C, 2013, 117(19):9739-9746.
doi: 10.1021/jp312013m |
[35] |
MONDAL K, BHATTACHARYYA S, SHARMA A. Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2nanofiber mats[J]. Ind Eng Chem Res, 2014, 53(49):18900-18909.
doi: 10.1021/ie5025744 |
[36] |
CAMILLO D, RUGGIERI F, SANTUCCI S, et al. N-doped TiO2 nanofibers deposited by electrospinning[J]. J Phys Chem C, 2012, 116(34):18427-18431.
doi: 10.1021/jp302499n |
[37] |
KAEWSAENEE J, VISAL-ATHAPHAND P, SUPAPHOL P, et al. Effects of magnesium and zirconium dopants on characteristics of titanium(IV) oxide fibers prepared by combined sol-gel and electrospinning techniques[J]. Ind Eng Chem Res, 2011, 50(13):8042-8049.
doi: 10.1021/ie102527p |
[38] |
WANG Y T, CHENG J, YU S Y, et al. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity[J]. Sci Rep, 2016, 6:32711-32721.
doi: 10.1038/srep32711 |
[39] |
PRADHAN A C, UYAR T. Electrospun Fe2O3 entrenched SiO2 supported N and S dual incorporated TiO2 nanofibers derived from mixed polymeric template/surfactant: enriched mesoporosity within nanofibers,effective charge separation,and visible light photocatalysis activity[J]. Ind Eng Chem Res, 2011, 50:8042-8049.
doi: 10.1021/ie102527p |
[40] |
LIU Y B, ZHU G Q, GAO J Z, et al. A novel synergy of Er3+/Fe3+ co-doped porous Bi5O7I microspheres with enhanced photocatalytic activity under visible-light irradiation[J]. Appl Catal B: Environ, 2017, 205(15):421-432.
doi: 10.1016/j.apcatb.2016.12.061 |
[41] |
DUAN Z J, HUANG Y Z, ZHANG D K, et al. Electrospinning fabricating Au/TiO2 network-like nanofibers as visible light activated photocatalyst[J]. Sci Rep, 2019, 9(1):8008-8016.
doi: 10.1038/s41598-019-44422-w |
[42] |
NALBANDIAN M J, GREENSTEIN K E, SHUAI D M, et al. Tailored synjournal of photoactive TiO2nanofibers and Au/TiO2nanofiber composites: structure and reactivity optimization for water treatment applications[J]. Environ Sci Technol, 2015, 49(3):1654-1663.
doi: 10.1021/es502963t |
[43] | FORMO E, LEE E, CAMPBELL D, et al. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. Nano Lett, 2008, 8(2):2668-672. |
[44] |
SHANG M, WANG W Z, ZHANG L, et al. 3D Bi2WO6/TiO2 hierarchical heterostructure: controllable synjournal and enhanced visible photocatalytic degradation performances[J]. J Phys Chem C, 2009, 113(33):14727-14731.
doi: 10.1021/jp9045808 |
[45] |
ZHANG Z Y, SHAO C L, LI X H, et al. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity[J]. J Phys Chem C, 2010, 114(17):7920-7925.
doi: 10.1021/jp100262q |
[46] |
ZHAGN T, SHEN Y, QIU Y H, et al. Facial synjournal and photoreaction mechanism of BiFeO3/Bi2Fe4O9 heterojunction nanofibers[J]. ACS Sustainable Chem Eng, 2017, 5(6):4630-4636.
doi: 10.1021/acssuschemeng.6b03138 |
[47] |
HOU H L, SHAGN M H, WANG L, et al. Efficient photocatalytic activities of TiO2hollow fibers with mixed phases and mesoporous walls[J]. Sci Rep, 2015, 5:15228-15237.
doi: 10.1038/srep15228 |
[48] |
LV C, CHEN G, SUN J X, et al. Construction of α-β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance[J]. Inorg Chem, 2016, 55(10):4782-4789.
doi: 10.1021/acs.inorgchem.6b00130 |
[49] |
GHAFOOR S, ATA S, MAHMOO N, et al. Photosensitization of TiO2 nanofibers by Ag2S with the synergistic effect of excess surface Ti3+ states for enhanced photocatalytic activity under simulated sunlight[J]. Sci Rep, 2017, 7(255):2045-2322.
doi: 10.1038/s41598-017-01960-5 |
[50] |
SUCHANEK J P HENKA P, et al. Effect of temperature on photophysical properties of polymeric nanofiber materials with porphyrin photosensitizers[J]. J Phys Chem B, 2014, 118(23):6167-6174.
doi: 10.1021/jp5029917 |
[51] |
QIN D D, LU W Y, WANG X Y, et al. Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation[J]. ACS Appl Mater Inter, 2016, 8(39):25962-25970.
doi: 10.1021/acsami.6b07680 |
[52] |
YANG Y C, WEN J W, WEI J H, et al. Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination[J]. ACS Appl Mater Inter, 2013, 5(13):6201-6207.
doi: 10.1021/am401167y |
[1] | 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42. |
[2] | 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41. |
[3] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[4] | 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30. |
[5] | 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45. |
[6] | 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51. |
[7] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[8] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[9] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[10] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[11] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[12] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[13] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[14] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[15] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
|