纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 47-52.doi: 10.13475/j.fzxb.20201005507

• 纤维材料 • 上一篇    下一篇

亚麻分层纳米纤维素的制备及其增强热电复合材料性能

胡静1, 张开威2, 李冉冉1, 林金友3, 刘宇清1()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.愉悦家纺有限公司, 山东 滨州 256600
    3.中国科学院上海应用物理研究所, 上海 201800
  • 收稿日期:2020-10-26 修回日期:2020-11-12 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 刘宇清
  • 作者简介:胡静(1995—),女,硕士生。主要研究方向为生物质智能纤维材料。
  • 基金资助:
    国家自然科学基金项目(51773221);中国科学院青年创新促进会基金项目(2017308)

Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites

HU Jing1, ZHANG Kaiwei2, LI Ranran1, LIN Jinyou3, LIU Yuqing1()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. Yuyue Home Textile Co., Ltd., Binzhou, Shandong 256600, China
    3. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received:2020-10-26 Revised:2020-11-12 Online:2021-02-15 Published:2021-02-23
  • Contact: LIU Yuqing

摘要:

为从天然亚麻纤维中制备出分层纳米纤维素(即纤维素纳米纤维(CNF)与纤维素纳米晶(CNC)共存),并对其制备方法进行优化完善,提出将亚麻纤维在特定浓度的氢氧化钠溶液中碱化处理后,再进行四甲基哌啶氮氧化物(TEMPO)介导的三元氧化和机械处理的联合处理方法。然后将亚麻CNF与石墨烯复合制备CNF/石墨烯复合薄膜并研究亚麻CNF增强热电复合材料的性能。结果表明:碱化预处理使亚麻纤维直径变细,长度变短,半纤维素被脱除,是生成不同尺寸CNF的重要步骤;随着氢氧化钠用量在0~18%范围内的增加,所得CNF悬浮液的光透过率从3.7%增加到95.1%;CNF/石墨烯复合膜表现出最高功率因子,为8.0×10 -3 μW/(m·K 2),表明复合薄膜具有热电性能。

关键词: 纳米纤维素, 复合薄膜, 增强热电复合材料, 亚麻纤维, 石墨烯

Abstract:

In order to prepare layered nano-cellulose from natural flax fiber, i.e. coexistence of cellulose nanofiber (CNF) and cellulose nanocrystalline (CNC), and improve the preparation method of CNF from flax fiber, a method of alkaline treatment of flax fiber in a specific concentration of sodium hydroxide solution, followed by tempo mediated ternary oxidation and mechanical treatment, was proposed. The CNF/graphene composite films were prepared by compounding flax CNF with graphene to study the properties of flax CNF reinforced thermoelectric composites. The results show that the diameter and length of flax fiber become smaller and the hemicellulose is removed after alkaline pretreatment, which is an important step towards generation of CNF with different sizes. The optical transmittance of CNF suspension increases from 3.7% to 95.1% with the increase of NaOH concentration in the range of 0-18%, and the highest power factor of CNF/graphene composite film is 8.0 × 10 -3 μW/(M·K 2), which indicates that the composite film has thermoelectric properties.

Key words: nano-cellulose, composite film, reinforced thermoelectric composite, flax fiber, graphene

中图分类号: 

  • TS102.221

图1

不同质量分数NaOH溶液碱化亚麻纤维的光学显微镜照片"

图2

不同质量分数NaOH 溶液碱化亚麻纤维的SEM照片"

图3

不同质量分数NaOH溶液碱化 亚麻的FT-IR光谱"

图4

不同质量分数NaOH溶液碱化亚麻的XRD谱图 注:标注的数据为对应亚麻纤维的计算后的结晶度指数和纤维素Ⅱ含量。"

图5

FF-CNF 水悬浮液的紫外-可见光谱和光学照片"

图6

FF-CNF 水性悬浮液的光学显微镜照片"

图7

FF-CNF薄膜的光学显微镜照片"

图8

FF-CNF薄膜的紫外-可见光谱和光学照片"

图9

石墨烯/CNF复合薄膜制备流程"

表1

石墨烯/CNF复合薄膜的热电性能"

石墨烯质
量分数/%
电导率/
(S·m-1)
塞贝克系数/
(μV·K-1)
功率因子/
(10-4μW·m-1·K-2)
10.0 3.0 12.8 4.8
20.0 8.1 23.0 41.0
30.0 11.0 26.9 80.0
[1] ASTRUC Jérémy, MALLADI Nagalakshmaiah, LAROCHE Gaétan, et al. Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties[J]. Carbohydrate Polymers, 2017(178):352-359.
[2] MOON Robert J, ASHLIE Martini, JOHN Nairn, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011,40(7):3941-3994.
[3] ISOGAI Akira, SAITO Tsuguyuki, FUKUZUMI Hayaka. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011,3(1):71-85.
pmid: 20957280
[4] 李美灿, 刘金刚, 陈京环, 等. 多孔性纳米纤维素膜的制备及应用综述[J]. 中国造纸, 2019,38(9):59-68.
LI Meican, LIU Jingang, CHEN Jinghuan, et al. Preparation and application of porous nano cellulose membrane[J]. China Paper, 2019,38(9):59-68.
[5] MARY Anne Hansan, 陈京环. 纤维素纳米纤维:一种新的重要材料[J]. 造纸信息, 2019(9):84.
MARY Anne Hansan, CHEN Jinghuan. Cellulose nanofibers: a new important material[J]. Papermaking Information, 2019 (9):84.
[6] LU Zhaoqing, HU Wenjing, XIE Fan, et al. Highly improved mechanical strength of aramid paper composite via a bridge of cellulose nanofiber[J]. Cellulose, 2017,24(7):2827-2835.
[7] WU Chunnan, FUH Shihchang, LIN Shinping, et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing[J]. Biomacro-molecules, 2018,19(2):544-554.
[8] ANTTI Sirviö Juho, MIIKKA Visanko. Highly transparent nanocomposites based on poly(vinyl alcohol) and sulfated UV-absorbing wood nanofibers[J]. Biomacro-molecules, 2019,20(6):2413-2420.
[9] MA Hongyang, CHRISTIAN Burger, HSIAO Benjamin S, et al. Ultrafine polysaccharide nanofibrous membranes for water purification[J]. Biomacro-molecules, 2011,12(4):970-976.
[10] 王红兴, 孟家光, 王彦杰, 等. 聚乙烯醇/再生纤维素纳米纤维膜的制备[J]. 合成纤维, 2018,47(7):24-26,33.
WANG Hongxing, MENG Jiaguang, WANG Yanjie, et al. Preparation of polyvinyl alcohol/regenerated cellulose nanofiber membrane[J]. Synthetic Fiber in China, 2018,47(7):24-26, 33.
[11] LIU Q, HUGHES M. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2008,39(10):1644-1652.
[12] BILJANA D Lazic, BILJANA M Pejic, ANA D Kramar, et al. Influence of hemicelluloses and lignin content on structure and sorption properties of flax fibers[J]. Cellulose, 2018,25(1):697-709.
[13] CHEN Wenshuai, YU Haipeng, LIU Yixing, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose, 2011,18(2):433-442.
[14] 戴磊, 程婷, 王岩, 等. TEMPO氧化纤维素纳米纤维在膜材料中的研究进展[J]. 陕西科技大学学报, 2020,38(1):115-123.
DAI Lei, CHENG Ting, WANG Yan, et al. Research progress of TEMPO oxidized cellulose nanofibers in membrane materials[J]. Journal of Shaanxi University of Science and Technology, 2020,38(1):115-123.
[15] LAZZARI Lídia K, ZAMPIERI Vitória B, ZANINI Márcia, et al. Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods[J]. Cellulose, 2017,24(8):3421-3431.
[1] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[2] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[3] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[4] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[5] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[6] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[7] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[8] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[9] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[10] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[11] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[12] 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38.
[13] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[14] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[15] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能[J]. 纺织学报, 2020, 41(01): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!