纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 128-134.doi: 10.13475/j.fzxb.20201007107

• 染整与化学品 • 上一篇    下一篇

芳纶固载BiOBr复合材料的制备及其光催化降解染色废水

张雨晗1, 申国栋1,2, 樊威1,3, 孙润军1,3()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.陕西科技大学 材料科学与工程学院, 陕西 西安 710021
    3.西安工程大学 省部共建智能纺织材料与制品国家重点实验室, 陕西 西安 710048
  • 收稿日期:2020-10-29 修回日期:2021-03-26 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 孙润军
  • 作者简介:张雨晗(1997—),女,硕士生。主要研究方向为纳米光催化材料的合成、改性及光催化机制。
  • 基金资助:
    国家自然科学基金面上项目(52073224);陕西省自然科学基础研究计划资助项目(2021JQ-681);陕西省教育厅专项科研计划项目(18JK0335);中国纺织工业联合会科技指导性项目(2020002)

Preparation of aramid fiber supported BiOBr composite materials and its photocatalytic degradation of dyeing wastewater

ZHANG Yuhan1, SHEN Guodong1,2, FAN Wei1,3, SUN Runjun1,3()   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
    3. State Key Laboratory of Intelligent Textile Material and Products, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2020-10-29 Revised:2021-03-26 Published:2021-08-15 Online:2021-08-24
  • Contact: SUN Runjun

摘要:

为解决粉体光催化剂在降解纺织印染废水过程中易团聚、难以回收利用的问题,采用溶剂热法制备芳纶固载BiOBr(BiOBr/AF)复合材料,对材料的微观形貌和结构进行表征与分析,研究了BiOBr/AF在可见光照射下对模拟染色废水的光催化深度降解性能。结果表明:以乙二醇为溶剂,柠檬酸为螯合剂,芳纶为固载基体,于160 ℃下反应12 h,形貌规整的厚片状BiOBr均匀生长于AF载体表面;BiOBr/AF可实现对直接湖蓝5B、弱酸性艳蓝A和活性嫩黄K-4S染料模拟染色废水的深度降解,降解率均高于98%,且具有良好的循环使用稳定性,化学需氧量(COD)和生化需氧量(BOD)降解率均高于70%,深度降解后的COD、BOD值能满足纺织染整工业水污染物排放限值要求。

关键词: 芳纶, 光催化降解, 溶剂热法, 染色废水处理

Abstract:

Aramid fiber (AF) supported BiOBr composite materials (BiOBr/AF) were prepared by the solvothermal method to solve the easy agglomeration and difficult recycling during degrading textile printing and dyeing wastewater by powder photocatalyst. The morphology and microstructure of the BiOBr/AF were characterized and analyzed, and the deep photocatalytic degradation performance of simulated dyeing wastewater by BiOBr/AF under visible light irradiation was also studied. The results show that the thick sheets of BiOBr with regular morphology are uniformly grown on the surface of AF by using ethylene glycol as solvent, citric acid as chelating agent and AF as supporting matrix at 160 ℃ for 12 h. BiOBr/AF has good deep degradation performance to the simulated dyeing wastewater of Direct Lake Blue 5B, Weak Acid Brilliant Blue A and Reactive Light Yellow K-4S. The degradation rates to all target dyes are more than 98%. In addition, BiOBr/AF presents good recycling stability. The chemical oxygen demand and biochemical oxygen demand degradation efficiency are higher than 70%, which meets the requirements for the emission limits of textile dyeing and finishing industrial water pollutants.

Key words: aramid fiber, photocatalytic degradation, solvothermal method, dyeing wastewater treatment

中图分类号: 

  • TS151

图1

染色工艺"

图2

BiOBr、AF和BiOBr/AF样品的XRD图"

图3

BiOBr、AF、BiOBr/AF样品的扫描电镜和透射电镜照片"

图4

BiOBr样品的UV-Vis DRS和Eg图"

图5

BiOBr/AF对染色废水和COD、BOD降解效果"

图6

BiOBr/AF对3种模拟染色废水循环降解性能"

图7

BiOBr/AF的光催化降解有机染料机制示意图"

[1] 赵斤斤. 光催化技术在环境治理方面的研究概述[J]. 山西化工, 2020 (1):24-25.
ZHAO Jinjin. Overview of research on photocatalysis technology in environmental governance[J]. Shanxi Chemical Industry, 2020(1):24-25.
[2] BANSAL J, HAFIZ A K, SHARMA S N. Photoreduction of dye with noble metal gold permeated with metal oxide titania[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6):3896-3901.
doi: 10.1166/jnn.2020.17501
[3] CHEN Yongjuan, HUANG Renkun, CHEN Daqin, et al. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4:2273-2279.
[4] PAKDEL E, DAOUD W A, AFRIN T, et al. Enhanced antimicrobial coating on cotton and its impact on UV protection and physical characteristics[J]. Cellulose, 2017, 24(9):4003-4015.
doi: 10.1007/s10570-017-1374-y
[5] CHO Dong Wan, JEON Byong Hun, CHON Chul Min, et al. Magnetic chitosan composite for adsorption of cationic and anionic dyes in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015, 28:60-66.
doi: 10.1016/j.jiec.2015.01.023
[6] AAZAM E S, MOHAMED R M. Environmental remediation of direct blue dye solutions by photocatalytic oxidation with cuprous oxide[J]. Journal of Alloys and Compounds, 2013, 577:550-555.
doi: 10.1016/j.jallcom.2013.06.167
[7] HUANG Hanjie, LI Danzhen, LIN Qiang, et al. Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation[J]. Journal of Physical Chemistry C, 2009, 113(32):14264-14269.
doi: 10.1021/jp902330w
[8] LAI Yuekun, HUANG Jianying, CUI Zequn, et al. Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion[J]. Small, 2016, 12(16):2203-2224.
doi: 10.1002/smll.201501837 pmid: 26695122
[9] FABRIZIO Giordano, ANTONIO Abate, JUAN Pablo Correa Baena, et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells[J]. Nature Communications, 2016, 7:10379.
doi: 10.1038/ncomms10379
[10] 许第发, 林中信, 游洋, 等. Ag-TiO2负载玻璃纤维的制备及其光催化活性[J]. 材料导报, 2012, 26(12):66-69.
XU Difa, LIN Zhongxin, YOU Yang, et al. Preparation and photocatalytic activity of Ag-TiO2 deposited on glass fiber[J]. Materials Reports, 2012, 26(12):66-69.
[11] 王璐, 朱蓓蓓, 李蓉, 等. 磁性黏土基TiO2复合材料的制备及其光催化性能[J]. 化工新型材料, 2019, 47(8):153-157.
WANG Lu, ZHU Beibei, LI Rong, et al. Fabrication and photocatalytic property of magnetic clay-based TiO2 composite[J]. New Chemical Materials, 2019, 47(8):153-157.
[12] 马建锋, 黄代琴, 邹静, 等. 活性炭纤维负载Ag3PO4光催化剂的可见光催化性能[J]. 常州大学学报, 2015, 27(2):45-50.
MA Jianfeng, HUANG Daiqin, ZOU Jing, et al. Visible-light photocatalytic activity of Ag3PO4 dispersed on actived carbon fiber[J]. Journal of Changzhou University, 2015, 27(2):45-50.
[13] 褚朱丹, 邱琳琳, 庄志山, 等. 纤维或织物负载光催化剂的研究进展[J]. 纺织科技进展, 2018, 11:6-10.
CHU Zhudan, QIU Linlin, ZHUANG Zhishan, et al. Research progress of fiber or fabric supported photocatalysts[J]. Progress in Textile Science & Technology, 2018, 11:6-10.
[14] 方云霞, 王秀莲, 赵倩倩, 等. 纤维负载g-C3N4复合光催化剂的合成及其光催化性能研究[J]. 河南化工, 2019, 36(2):18-21.
FANG Yunxia, WANG Xiulian, ZHAO Qianqian, et al. Synjournal and photocatalytic properties of fiber-supported g-C3N4 composite photocatalyst[J]. Henan Chemical Industry, 2019, 36(2):18-21.
[15] 杜邹菲, 赵鲁丹, 郭荣辉, 等. 钨酸铋负载涤纶织物的制备及其光催化性能[J]. 纺织学报, 2017, 38(2):123-128.
DU Zoufei, ZHAO Ludan, GUO Ronghui, et al. Preparation of bismuth tungstate coated polyester fabric and its photocatalytic activity[J]. Journal of Textile Research, 2017, 38(2):123-128.
[16] SU Xiuping, CHEN Wei, HAN Yanna, et al. In-situ synjournal of Cu2O on cotton fibers with antibacterial properties and reusable photocatalytic degradation of dyes[J]. Applied Surface Science, 2021, 536:147945.
doi: 10.1016/j.apsusc.2020.147945
[17] 周存, 李叶燃, 马悦, 等. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11):91-95.
ZHOU Cun, LI Yeran, MA Yue, et al. Preparation and photocatalytic properties of polyester fabric loaded with titanium dioxide[J]. Journal of Textile Research, 2018, 39(11):91-95.
[18] JIANG Guohua, LI Xia, WEI Zhen, et al. Immobilization of N, S-codoped BiOBr on glass fibers for photocatalytic degradation of rhodamine B[J]. Powder Technology, 2014, 261:170-175.
doi: 10.1016/j.powtec.2014.04.042
[19] 杨斌, 王琳, 张美云, 等. 基于芳纶纳米纤维的芳纶纳米纸结构与性能研究进展[J]. 中国造纸, 2020, 39(7):62-68.
YANG Bin, WANG Lin, ZHANG Meiyun, et al. Research progress on structure and properties of aramid nanopaper based on the aramid nanofiber[J]. China Pulp & Paper, 2020, 39(7):62-68.
[20] JIANG Guohua, LI Xia, WEI Zhen, et al. Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation[J]. Powder Technology, 2014, 260:84-89.
doi: 10.1016/j.powtec.2014.04.005
[21] 李艳青, 裴小菲, 智丽丽, 等. BiOBr半导体光催化材料的制备及性能研究[J]. 当代化工研究, 2020, 15:1-3.
LI Yanqing, PEI Xiaofei, ZHI Lili, et al. Preparation of BiOBr photocatalytic materials and study on their performance[J]. Modern Chemical Research, 2020, 15:1-3.
[22] SHEN Guodong, PU Yongping, SUN Runjun, et al. Enhanced visible light photocatalytic performance of a novel heterostructured Bi4Ti3O12/BiOBr photocata-lyst[J]. New Journal of Chemistry, 2019, 43(33):12932-12940.
doi: 10.1039/c9nj02723h
[23] ZHANG Jun, SHI Fengjun, LIN Jing, et al. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst[J]. Chemistry of Materials, 2008, 20:2937-2941.
doi: 10.1021/cm7031898
[24] ZHENG Jiang, YANG Fan, YANG Guidong, et al. The hydrothermal synjournal of BiOBr flakes for visible-light responsive photocatalytic degradation of methyl orange[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 212(1):8-13.
doi: 10.1016/j.jphotochem.2010.03.004
[25] AI Zhihui, HO Wingkei, LEE Shuncheng, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11):4143-4150.
doi: 10.1021/es9004366
[26] 张美云, 苏治平, 陆赵情, 等. 超声处理对对位芳纶纤维分散性能及成纸性能的影响[J]. 陕西科技大学学报, 2016, 34(5):12-16.
ZHANG Meiyun, SU Zhiping, LU Zhaoqing, et al. Effect of ultrasonic treatment on the dispersion capability and sheet forming performance of para-aramid fiber[J]. Journal of Shaanxi University of Science & Technology, 2016, 34(5):12-16.
[27] DUO Fangfang, WANG Yawen, FAN Caimei, et al. Enhanced visible light photocatalytic activity and stability of CQDs/BiOBr composites: the upconversion effect of CQDs[J]. Journal of Alloys and Compounds, 2016, 685:34-41.
doi: 10.1016/j.jallcom.2016.05.259
[28] SHEN Guodong, PU Yongping, CUI Yongfei, et al. Effect of ferroelectric Ba0.8Sr0.2TiO3 on the charge carrier separation of BiOBr at different temperature[J]. Applied Surface Science, 2021, 550:149366.
doi: 10.1016/j.apsusc.2021.149366
[1] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[2] 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88.
[3] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[4] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[5] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[6] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[7] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[8] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[9] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[10] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[11] 庄群, 张飞, 杜兆芳, 姜华. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103.
[12] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[13] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[14] 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113.
[15] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!