纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 12-20.doi: 10.13475/j.fzxb.20201007209

• 纤维材料 • 上一篇    下一篇

柔性光子晶体结构生色膜的制备及其光学性质

王晓辉1, 李义臣1, 刘国金1, 唐族平2, 周岚1, 邵建中1()   

  1. 1.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
    2.海宁绿盾纺织科技有限公司, 浙江 嘉兴 314408
  • 收稿日期:2020-10-29 修回日期:2020-11-16 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 邵建中
  • 作者简介:王晓辉(1995—),男,博士生。主要研究方向为仿生光子晶体结构生色材料。
  • 基金资助:
    国家自然科学基金项目(51773181);浙江省自然科学基金项目(LQ19E030022);浙江省自然科学基金项目(LY20E030006);浙江省公益技术研究项目(LGC20E030001)

Preparation and optical properties of flexible photonic crystal film for structural colors

WANG Xiaohui1, LI Yichen1, LIU Guojin1, TANG Zuping2, ZHOU Lan1, SHAO Jianzhong1()   

  1. 1. Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Haining Green-Guard Textile Sci-Tech Co., Ltd., Jiaxing, Zhejiang 314408, China
  • Received:2020-10-29 Revised:2020-11-16 Online:2021-02-15 Published:2021-02-23
  • Contact: SHAO Jianzhong

摘要:

针对硬质纳米微球所构筑的光子晶体在外力作用下结构易损坏,结构色耐久性差的问题,采用分步法合成内刚外柔型聚苯乙烯/聚(甲基丙烯酸甲酯-丙烯酸丁酯)(PS/P(MMA-BA))纳米微球,然后通过熔融剪切法快速制备柔性光子晶体结构生色膜。结果表明:纳米微球制备中内核交联剂二乙烯苯(DVB)可增加PS内核的交联密度和折光指数,使之与外层产生一定的折光指数差,且可与外层P(MMA-BA)共价连接;外层交联剂甲基丙烯酸烯丙酯(ALMA)可使纳米微球外层形成一定的交联点而提高外层的稳定性;当DVB用量为苯乙烯(St)的12.5%,ALMA用量为MMA与BA总量的0.3%时,光子晶体结构生色膜具有优良光学性质和力学性质,产生的结构色鲜艳明亮,且耐弯折、耐冲洗、耐摩擦;适应此类纳米微球组装的熔融剪切法,能快速大面积制备柔性光子晶体结构生色膜。

关键词: 柔性光子晶体, 结构生色, 纳米微球, 交联剂, 结构稳定性, 光学性质, 纺织品

Abstract:

To solve the problem that photonic crystal (PC) structures constructed by hard nanospheres are easy to be damaged by external forces, resulting in poor durability of the structural colors, polystyrene/poly (methyl methacrylate-butyl acrylate) (PS/P(MMA-BA)) nanospheres were synthesized by means of the step-by-step polymerization method, and the flexible PC films with structural colors were fabricated by using the prepared PS/P(MMA-BA) nanospheres as assembly blocks through melt-shear induced self-assembly method. The results show that the core cross-linking agent, divinylbenzene (DVB), is able to increase the cross-linking density and refractive index of PS core, to produce a certain refractive index contrast with the outer layer, and to make the PS core surface have double bonds, covalently bonding with the outer layer of P(MMA-BA). The outer layer cross-linking agent, allyl methacrylate (ALMA), improves the stability of the outer layer by forming some crossing-linking bonds. When DVB is 12.5% of styrene (St) and ALMA is 0.3% of the total amount of MMA and BA, PC film demonstrates excellent optical and mechanical properties. PC structures assembled by the nanospheres exhibit excellent flexibility, brilliant structural colors, and high stability during the bending, washing and rubbing tests. The melt-shear assembly method adapted to the PS/P(MMA-BA) nanospheres can rapidly fabricate large area of flexible PC film with structural colors.

Key words: flexible photonic crystal, structural color, nanosphere, cross-linking agent, structural stability, optical property, textile

中图分类号: 

  • TS193.5

图1

PS/P(MMA-BA)纳米微球的制备机制"

图2

PS/P(MMA-BA)纳米微球的粒径变化及其分布"

图3

PS内核的红外谱图"

图4

P(MMA-BA)和PS/P(MMA-BA)纳米微球的红外光谱图"

图5

不同质量分数DVB制备的PS/P(MMA-BA)纳米微球的扫描电镜照片"

图6

不同质量分数DVB制备的PS/P(MMA-BA)纳米微球所构筑的光子晶体膜的光学显微镜照片"

图7

不同质量分数DVB对光子晶体膜的光学性质及力学性能的影响"

图8

不同质量分数ALMA制备的纳米微球构筑的光子晶体膜的光学显微镜照片"

图9

不同质量分数ALMA对光子晶体膜光学性质及力学性能的影响"

图10

柔性光子晶体膜的熔融剪切制备机制"

图11

熔融剪切过程中样品表面三维形貌图"

图12

熔融剪切过程中样品的光学性质"

图13

熔融剪切过程中样品的横截面SEM照片"

图14

热擀压后光子晶体膜表面的扫描电镜照片"

图15

不同粒径纳米微球构筑的光子晶体结构生色膜"

图16

柔性光子晶体膜的结构稳定性测试结果"

[1] ZHAO Y J, XIE Z Y, GUH C, et al. Bio-inspired variable structural color materials[J]. Chemical Society Reviews, 2012,41(8):3297-3317.
pmid: 22302077
[2] GE D T, LEE E, YANG L L, et al. A robust smart window: reversibly switching from high transparency to angle-independent structural color display[J]. Advanced Materials, 2015,27(15):2489-2495.
doi: 10.1002/adma.201500281 pmid: 25732127
[3] SU X, CHANG J, WU S L, et al. Synjournal of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color[J]. Nanoscale, 2016,8(11):6155.
doi: 10.1039/c5nr08401f pmid: 26931519
[4] SUN J, BHUSHAN B, TONG J. Structural coloration in nature[J]. RSC Advances, 2013,3(35):14862-14889.
[5] GE J P, YIN Y D. Magnetically responsive colloidal photonic crystals[J]. Journal of Materials Chemistry, 2008,18(42):5041-5045.
[6] WANG H, ZHANG K Q. Photonic crystal structures with tunable structure color as colorimetric sensors[J]. Sensors, 2013,13(4):4192-4213.
pmid: 23539027
[7] SHANG L R, GU Z Z, ZHAO Y J. Structural color materials in evolution[J]. Materials Today, 2016,19(8):420-421.
[8] 宋心远, 沈煜如. 结构生色和纺织品生态着色:一[J]. 上海染料, 2006,33(1):1-9.
SONG Xinyuan, SHEN Yuru. Structural color and ecological coloration of textiles:Ⅰ[J]. Journal of Shanghai Dyes, 2006,33(1):1-9.
[9] 宋心远, 沈煜如. 结构生色和纺织品生态着色二[J]. 上海染料, 2005,33(2):11-16,22.
SONG Xinyuan, SHEN Yuru. Structural color and ecological coloration of textiles:Ⅱ[J]. Journal of Shanghai Dyes, 2005,33(2):11-16, 22.
[10] 宋心远, 沈煜如. 结构生色和纺织品生态着色三[J]. 上海染料, 2005,33(3):1-6.
SONG Xinyuan, SHEN Yuru. Structural color and ecological coloration of textiles:Ⅲ[J]. Journal of Shanghai Dyes, 2005,33(3):1-6.
[11] ZHOU L, LI Y C, LIU G J, et al. Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates[J]. Dyes and Pigments, 2016,133:435-444.
[12] ZHOU L, WU Y J, LIU G J, et al. Fabrication of high-quality silica photonic crystals on polyester fabrics by gravitational sedimentation self-assembly[J]. Coloration Technology, 2016,131(6):413-423.
[13] LIU G J, ZHOU L, ZHANG G Q, et al. Study on the binding strength of polystyrene photonic crystals on polyester fabrics[J]. Journal of Materials Science, 2016,51(19):8953-8964.
doi: 10.1007/s10853-016-0146-7
[14] WANG J X, WEN Y Q, GE H L, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength[J]. 2006,207(6):596-604.
[15] MENG Z P, WU S, TANG B T, et al. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting[J]. Nanoscale, 2018,10:14755-14762.
doi: 10.1039/c8nr04058c pmid: 30042988
[16] MENG Z P, HUANG B H, WU S L, et al. Bio-inspired transparent structural color film and its application in biomimetic camouflage[J]. Nanoscale, 2019(11):13377-13384.
[17] LI Y C, WANG X H, HU M G, et al. Patterned SiO2/PUA inverse opal photonic crystals with high color saturation and tough mechanical strength[J]. Langmuir, 2019,35(44):14282-14290.
doi: 10.1021/acs.langmuir.9b02485 pmid: 31609122
[18] ZHONG K, LIU L W, LIN J Y, et al. Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap[J]. Advanced Materials Interfaces, 2016,3(18):1600579-1600566.
doi: 10.1002/admi.201600579
[19] CHU L, ZHANG X T, NIU W B, et al. Hollow silica opals/cellulose acetate nanocomposite films with structural colors for anti-counterfeiting of banknotes[J]. Journal of Materials Chemistry C, 2019(7):7411-7417.
[20] LI Y C, ZHOU L, LIU G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates[J]. Applied Surface Science, 2018,444:145-153.
doi: 10.1016/j.apsusc.2018.03.044
[21] YAO M, TANG B T, XIU J H, et al. Simple fabrication of colloidal crystal structural color films with good mechanical stability and high hydrophobicity[J]. Dyes & Pigments, 2015,123:420-426.
[22] SPAHN P, FINLAYSON C E, ETAH W M, et al. Modification of the refractive-index contrast in polymer opal films[J]. Journal of Materials Chemistry, 2011,21(24):8893-8897.
doi: 10.1039/c1jm00063b
[23] ZHAO Q B, FINLAYSON C E, SNOSWELL D R E, et al. Large-scale ordering of nanoparticles using viscoelastic shear processing[J]. Nature Communications, 2016.DOI: 10.1038/ncomms11661.
doi: 10.1038/s41467-021-21868-z pmid: 33727563
[24] WANG X H, LI Y C, ZHOU L, et al. Structural colouration of textiles with high colour contrast based on melanin-like nanospheres[J]. Dyes and Pigments, 2019,169:36-44.
doi: 10.1016/j.dyepig.2019.05.006
[25] MING X, LI Y W, ZHAO J Z, et al. Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles[J]. Chemistry of Materials, 2016,28:5516-5521.
doi: 10.1021/acs.chemmater.6b02127
[26] KOHRI, MICHINARI, KAWAMURA, et al. Structural color tuning: mixing melanin-like particles with different diameters to create neutral colors[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2017,33(15):3824-3830.
doi: 10.1021/acs.langmuir.7b00707 pmid: 28365991
[27] YANG X M, GE D T, WU G X, et al. Production of Structural colors with high contrast and wide viewing angles from assemblies of polypyrroleblack coated polystyrene nanoparticles[J]. ACS Applied Materials & Interfaces, 2016,8(25):16289-16295.
doi: 10.1021/acsami.6b03739 pmid: 27322393
[1] 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73.
[2] 李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕. 生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理[J]. 纺织学报, 2021, 42(04): 8-15.
[3] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[4] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[5] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[6] 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148.
[7] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[8] 刘明雪, 赵倩, 王晓辉, 刘琼溪, 邵建中. 磁控溅射纳米膜与不同纺织基材的结合牢度[J]. 纺织学报, 2021, 42(02): 135-141.
[9] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[10] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[11] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[12] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[13] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[14] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[15] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!