纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 12-20.doi: 10.13475/j.fzxb.20201007209
王晓辉1, 李义臣1, 刘国金1, 唐族平2, 周岚1, 邵建中1()
WANG Xiaohui1, LI Yichen1, LIU Guojin1, TANG Zuping2, ZHOU Lan1, SHAO Jianzhong1()
摘要:
针对硬质纳米微球所构筑的光子晶体在外力作用下结构易损坏,结构色耐久性差的问题,采用分步法合成内刚外柔型聚苯乙烯/聚(甲基丙烯酸甲酯-丙烯酸丁酯)(PS/P(MMA-BA))纳米微球,然后通过熔融剪切法快速制备柔性光子晶体结构生色膜。结果表明:纳米微球制备中内核交联剂二乙烯苯(DVB)可增加PS内核的交联密度和折光指数,使之与外层产生一定的折光指数差,且可与外层P(MMA-BA)共价连接;外层交联剂甲基丙烯酸烯丙酯(ALMA)可使纳米微球外层形成一定的交联点而提高外层的稳定性;当DVB用量为苯乙烯(St)的12.5%,ALMA用量为MMA与BA总量的0.3%时,光子晶体结构生色膜具有优良光学性质和力学性质,产生的结构色鲜艳明亮,且耐弯折、耐冲洗、耐摩擦;适应此类纳米微球组装的熔融剪切法,能快速大面积制备柔性光子晶体结构生色膜。
中图分类号:
[1] |
ZHAO Y J, XIE Z Y, GUH C, et al. Bio-inspired variable structural color materials[J]. Chemical Society Reviews, 2012,41(8):3297-3317.
pmid: 22302077 |
[2] |
GE D T, LEE E, YANG L L, et al. A robust smart window: reversibly switching from high transparency to angle-independent structural color display[J]. Advanced Materials, 2015,27(15):2489-2495.
doi: 10.1002/adma.201500281 pmid: 25732127 |
[3] |
SU X, CHANG J, WU S L, et al. Synjournal of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color[J]. Nanoscale, 2016,8(11):6155.
doi: 10.1039/c5nr08401f pmid: 26931519 |
[4] | SUN J, BHUSHAN B, TONG J. Structural coloration in nature[J]. RSC Advances, 2013,3(35):14862-14889. |
[5] | GE J P, YIN Y D. Magnetically responsive colloidal photonic crystals[J]. Journal of Materials Chemistry, 2008,18(42):5041-5045. |
[6] |
WANG H, ZHANG K Q. Photonic crystal structures with tunable structure color as colorimetric sensors[J]. Sensors, 2013,13(4):4192-4213.
pmid: 23539027 |
[7] | SHANG L R, GU Z Z, ZHAO Y J. Structural color materials in evolution[J]. Materials Today, 2016,19(8):420-421. |
[8] | 宋心远, 沈煜如. 结构生色和纺织品生态着色:一[J]. 上海染料, 2006,33(1):1-9. |
SONG Xinyuan, SHEN Yuru. Structural color and ecological coloration of textiles:Ⅰ[J]. Journal of Shanghai Dyes, 2006,33(1):1-9. | |
[9] | 宋心远, 沈煜如. 结构生色和纺织品生态着色二[J]. 上海染料, 2005,33(2):11-16,22. |
SONG Xinyuan, SHEN Yuru. Structural color and ecological coloration of textiles:Ⅱ[J]. Journal of Shanghai Dyes, 2005,33(2):11-16, 22. | |
[10] | 宋心远, 沈煜如. 结构生色和纺织品生态着色三[J]. 上海染料, 2005,33(3):1-6. |
SONG Xinyuan, SHEN Yuru. Structural color and ecological coloration of textiles:Ⅲ[J]. Journal of Shanghai Dyes, 2005,33(3):1-6. | |
[11] | ZHOU L, LI Y C, LIU G J, et al. Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates[J]. Dyes and Pigments, 2016,133:435-444. |
[12] | ZHOU L, WU Y J, LIU G J, et al. Fabrication of high-quality silica photonic crystals on polyester fabrics by gravitational sedimentation self-assembly[J]. Coloration Technology, 2016,131(6):413-423. |
[13] |
LIU G J, ZHOU L, ZHANG G Q, et al. Study on the binding strength of polystyrene photonic crystals on polyester fabrics[J]. Journal of Materials Science, 2016,51(19):8953-8964.
doi: 10.1007/s10853-016-0146-7 |
[14] | WANG J X, WEN Y Q, GE H L, et al. Simple fabrication of full color colloidal crystal films with tough mechanical strength[J]. 2006,207(6):596-604. |
[15] |
MENG Z P, WU S, TANG B T, et al. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting[J]. Nanoscale, 2018,10:14755-14762.
doi: 10.1039/c8nr04058c pmid: 30042988 |
[16] | MENG Z P, HUANG B H, WU S L, et al. Bio-inspired transparent structural color film and its application in biomimetic camouflage[J]. Nanoscale, 2019(11):13377-13384. |
[17] |
LI Y C, WANG X H, HU M G, et al. Patterned SiO2/PUA inverse opal photonic crystals with high color saturation and tough mechanical strength[J]. Langmuir, 2019,35(44):14282-14290.
doi: 10.1021/acs.langmuir.9b02485 pmid: 31609122 |
[18] |
ZHONG K, LIU L W, LIN J Y, et al. Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap[J]. Advanced Materials Interfaces, 2016,3(18):1600579-1600566.
doi: 10.1002/admi.201600579 |
[19] | CHU L, ZHANG X T, NIU W B, et al. Hollow silica opals/cellulose acetate nanocomposite films with structural colors for anti-counterfeiting of banknotes[J]. Journal of Materials Chemistry C, 2019(7):7411-7417. |
[20] |
LI Y C, ZHOU L, LIU G J, et al. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates[J]. Applied Surface Science, 2018,444:145-153.
doi: 10.1016/j.apsusc.2018.03.044 |
[21] | YAO M, TANG B T, XIU J H, et al. Simple fabrication of colloidal crystal structural color films with good mechanical stability and high hydrophobicity[J]. Dyes & Pigments, 2015,123:420-426. |
[22] |
SPAHN P, FINLAYSON C E, ETAH W M, et al. Modification of the refractive-index contrast in polymer opal films[J]. Journal of Materials Chemistry, 2011,21(24):8893-8897.
doi: 10.1039/c1jm00063b |
[23] |
ZHAO Q B, FINLAYSON C E, SNOSWELL D R E, et al. Large-scale ordering of nanoparticles using viscoelastic shear processing[J]. Nature Communications, 2016.DOI: 10.1038/ncomms11661.
doi: 10.1038/s41467-021-21868-z pmid: 33727563 |
[24] |
WANG X H, LI Y C, ZHOU L, et al. Structural colouration of textiles with high colour contrast based on melanin-like nanospheres[J]. Dyes and Pigments, 2019,169:36-44.
doi: 10.1016/j.dyepig.2019.05.006 |
[25] |
MING X, LI Y W, ZHAO J Z, et al. Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles[J]. Chemistry of Materials, 2016,28:5516-5521.
doi: 10.1021/acs.chemmater.6b02127 |
[26] |
KOHRI, MICHINARI, KAWAMURA, et al. Structural color tuning: mixing melanin-like particles with different diameters to create neutral colors[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2017,33(15):3824-3830.
doi: 10.1021/acs.langmuir.7b00707 pmid: 28365991 |
[27] |
YANG X M, GE D T, WU G X, et al. Production of Structural colors with high contrast and wide viewing angles from assemblies of polypyrroleblack coated polystyrene nanoparticles[J]. ACS Applied Materials & Interfaces, 2016,8(25):16289-16295.
doi: 10.1021/acsami.6b03739 pmid: 27322393 |
[1] | 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73. |
[2] | 李永贺, 瞿凌曦, 徐壁, 蔡再生, 葛凤燕. 生物基聚对苯二甲酸丙二醇酯织物的阻燃与三防一步法泡沫整理[J]. 纺织学报, 2021, 42(04): 8-15. |
[3] | 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109. |
[4] | 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189. |
[5] | 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135. |
[6] | 孟灵灵, 魏取福, 严忠杰, 仲珍珍, 王小慧, 沈佳宇, 陈洪炜. 磁控溅射Ag/ZnO纳米薄膜涤纶织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 143-148. |
[7] | 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180. |
[8] | 刘明雪, 赵倩, 王晓辉, 刘琼溪, 邵建中. 磁控溅射纳米膜与不同纺织基材的结合牢度[J]. 纺织学报, 2021, 42(02): 135-141. |
[9] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[10] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[11] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[12] | 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58. |
[13] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[14] | 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86. |
[15] | 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72. |
|