纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 81-87.doi: 10.13475/j.fzxb.20201007607

• 纺织工程 • 上一篇    下一篇

超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究

张志颖1, 王亦秋2, 眭建华3,4()   

  1. 1.江苏省纺织产品质量监督检验研究院, 江苏 南京 210007
    2.南通市纤维检验所, 江苏 南通 226009
    3.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    4.纺织行业天然染料重点实验室, 江苏 苏州 215123
  • 收稿日期:2020-10-29 修回日期:2022-08-09 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 眭建华
  • 作者简介:张志颖(1997—),女,硕士。主要研究方向为纺织新产品开发。
  • 基金资助:
    江苏省高等学校自然科学基金项目(22KJA540002);江苏省高等学校自然科学基金项目(22KJA480004);江苏省先进纺织工程技术中心资助项目(XJFZ/2021/15)

Study of hollow honeycomb molded composites reinforced by ultra high molecular weight polyethylene fabrics

ZHANG Zhiying1, WANG Yiqiu2, SUI Jianhua3,4()   

  1. 1. Jiangsu Textile Products Quality Supervision Inspection Institute, Nanjing, Jiangsu 210007, China
    2. Nantong Fiber Inspection Institute, Nantong, Jiangsu 226009, China
    3. School of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    4. Key Laboratory of Natural Dyes in Textile Industry, Suzhou, Jiangsu 215123, China
  • Received:2020-10-29 Revised:2022-08-09 Published:2022-11-15 Online:2022-12-26
  • Contact: SUI Jianhua

摘要:

为研制车船等壳体所用的轻质、高强复合板材,选用超高分子量聚乙烯(UHMWPE)短纤维纱,制备成单层经纬为120根/(10 cm)的平纹组织,采用多组经纱持续更替交织层的方法制成2L(1+0)型、4L(2+1)型、6L(3+2)型3种多层角联锁结构织物,采用扦插芯棒、模压成型方法制成菱形蜂窝状的热固性环氧树脂基中空板,并与2块真空吸液法制成的面板组成“三合一”复合板,同时测定了复合板材的结构特征及其平拉、平压和弯曲性能。结果表明:3种类型复合板的密度均远小于水的密度,其中6L(3+2)型最小,为0.48 g/cm3;复合板层数越多,环氧树脂越难渗透尤其是在中空板菱形交叉点处,复合板平拉、平压、抗弯曲强度则呈现递增,制成的6L(3+2)型复合板试样平压强度可达到1.03 MPa。

关键词: 超高分子量聚乙烯纤维, 多层织物, 环氧树脂, 蜂窝结构, 复合板, 力学性能

Abstract:

In order to develop light-weight and high-strength composite sheet materials for vehicle and ship shells, ultra high molecular weight polyethytene(UHMWPE) short fiber yarns were used as the warp and weft to weave honeycomb fabrics with a single layer warp and weft densities being 120 fibers in 10 cm and with to make 2L(1+0), 4L(2+1) and 6L(3+2) structures. Using thermosetting epoxy resin as the matrix, the panel was made of the honeycomb core with top and bottom plates which were made using vacuum method, where the diamond-shaped cells in the core were created by opening sticks. The"three-in-one" honeycomb composite plates were prepared and the structural characteristics of the composite boards and the tensile, flattening and bending properties were measured. The test results show that the specific densities of the three types of composite boards are far less than that of water, and the 6L(3+2) boards reaches a specific density of 0.48 g/cm3. It is also found that the more the layers of the composite boards, the more difficult it is for the epoxy resin to penetrate, especially at the rhombic intersection of the hollow plate, causing flexural strength to increase under horizontal tensile and compression loading. The horizontal compression strength of the 6L (3+2) composite plate sample reach 1.03 MPa.

Key words: ultra high molecular weight polyethylene fiber, multilayer fabric, epoxy resin, honeycomb structure, composite board, mechanical property

中图分类号: 

  • TS155

图1

中空复合板设计图"

图2

6L(3+2)角联锁结构织物示意图"

表1

6L(3+2)型组织层次配置"

经纱组别 区段号
Y1 1 1 2 3 4 5 6 6 5 4 3 2
Y2 2 3 4 5 6 6 5 4 3 2 1 1
Y3 3 2 1 1 2 3 4 5 6 6 5 4
Y4 4 5 6 6 5 4 3 2 1 1 2 3
Y5 5 4 3 2 1 1 2 3 4 5 6 6
Y6 6 6 5 4 3 2 1 1 2 3 4 5

图3

6L(3+2)角联锁结构织物制备"

图4

中空蜂窝复合板制备"

表2

复合板结构指标测试结果"

板型 P/(g·cm-3) CV/% p1/(g·cm-3) CV1/% p2/(g·cm-3) CV2/% σV/% TgU/%
2L(1+0) 0.59 0.23 1.99 0.25 2.27 2.10 55.92 41.46
4L(2+1) 0.55 2.80 1.22 3.04 2.41 2.89 45.29 29.78
6L(3+2) 0.48 5.90 1.85 6.59 2.14 2.40 43.97 32.46

图5

3类中空复合板平拉性能关系曲线"

图6

3类中空复合板平压性能关系曲线"

图7

3类中空复合板位移-最大载荷值关系曲线"

[1] 吴利伟, 王伟, 林佳弘, 等. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(7):64-70.
WU Liwei, WANG Wei, LIN Jiahong, et al. Preparation and mechanical properties of aramid / UHMWPE fabric reinforced polyurethane sandwich composites[J]. Acta Textile Sinica, 2019, 40 (7): 64-70.
[2] 赵康. 含孔三维机织玻纤/环氧复合材料力学性能的研究[D]. 上海: 东华大学, 2016:14-18.
ZHAO Kang. Study on mechanical properties of 3D woven glass fiber / epoxy composites with holes[D]. Shanghai: Donghua University, 2016: 14-18.
[3] 杜石啸. 超高分子聚乙烯的性能及应用领域[J]. 甘肃冶金, 2015, 37(2):133-134.
DU Shixiao. Properties and application fields of ultra-high molecular polyethylene[J]. Gansu Metallurgy, 2015, 37 (2): 133-134.
[4] CHEN X G, SUN Y, GONG X Z. Design, manufacture, and experimental Analysis of 3D honeycomb textile composites part Ⅱ: experimental analysis[J]. Textile Research Journal, 2015(5): 1011-1021.
[5] 沈新元. 先进高分子材料[M]. 北京: 中国纺织出版社, 2006:15-55.
SHEN Xinyuan. Advanced polymer material[M]. Beijing: China Textile Apparel Press, 2006: 15-55.
[6] 张艳, 周宏, 杨年慈, 等. 超高分子量聚乙烯纤维在防弹、防刺材料方面的应用[J]. 纺织科学研究, 2009(4):16-26.
ZHANG Yan, ZHOU Hong, YANG Nianci, et al. Application of ultra-high molecular weight polyethylene fibers in bulletproof and puncture-resistant mate-rials[J]. Textile Science Research, 2009 (4): 16-26.
[7] 孙颖, 史宝会, 李涛涛, 等. 芳纶/高强聚乙烯纤维混杂复合材料低速冲击实验研究[J]. 固体火箭技术, 2016, 39(5):709-714.
SUN Ying, SHI Baohui, LI Taotao, et al. Experimental research on low-speed impact of aramid / high-strength polyethylene fiber hybrid composites[J]. Solid Rocket Technology, 2016, 39 (5): 709-714.
[8] 杨小俊, 兰青山. 新型纸蜂窝夹芯结构复合板及其应用前景[J]. 包装工程, 2010, 31(19):121-123,130.
YANG Xiaojun, LAN Qingshan. New paper honeycomb sandwich structure composite board and its application prospect[J]. Packaging Engineering, 2010, 31 (19): 121-123, 130.
[9] 王俊, 杨国刚, 郭江程, 等. 热塑性蜂窝夹芯结构复合板的结构、制造及应用[J]. 汽车工艺与材料, 2012(5):44-46.
WANG Jun, YANG Guogang, GUO Jiangcheng, et al. Structure, manufacturing and application of thermoplastic honeycomb sandwich structure composite board[J]. Automotive Technology and Materials, 2012 (5): 44-46.
[10] CHEN X G, SUN Y, GONG X Z. Design, manufacture, and experimental analysis of 3D honeycomb textile composites part I: design and manufacture[J]. Textile Research Journal, 2008, 78: 771-781.
doi: 10.1177/0040517507087855
[11] 顾平. 织物组织与结构学[M]. 上海: 东华大学, 2010:179-182.
GU Ping. Fabric organization and structure[M]. Shanghai: Donghua University, 2010: 179-182.
[12] 孙亚平, 卢立新, 蔡和平. 纸蜂窝结构平压性能的实验研究[J]. 包装工程, 2003(1):14-15,34.
SUN Yiaping, LU Lixin, CAI Heping. Experimental research on flat compression performance of paper honeycomb structures[J]. Packaging Engineering, 2003 (1): 14-15,34.
[1] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[2] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[3] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[4] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[5] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[6] 孙颖, 李端鑫, 于洋, 陈嘉琳, 范皖月. 大麻纤维的芬顿法脱胶及其性能[J]. 纺织学报, 2022, 43(08): 95-100.
[7] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[8] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[9] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[10] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[11] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[12] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[13] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[14] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[15] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .