纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 53-59.doi: 10.13475/j.fzxb.20201008107

• 纤维材料 • 上一篇    下一篇

基于海藻酸钠/磷虾蛋白的支架材料制备及其性能

殷聚辉1, 郭静1,2(), 王艳1,2, 曹政1, 管福成1,2, 刘树兴1   

  1. 1.大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
    2.辽宁省功能纤维及复合材料工程技术中心, 辽宁 大连 116034
  • 收稿日期:2020-10-29 修回日期:2020-11-06 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 郭静
  • 作者简介:殷聚辉(1994—),男,硕士生。主要研究方向为高分子材料研发。
  • 基金资助:
    国家自然科学基金项目(51773024);国家自然科学基金项目(51373027);辽宁省科技创新团队项目(LT2017017)

Preparation and properties of sodium alginate/krill protein scaffold materials

YIN Juhui1, GUO Jing1,2(), WANG Yan1,2, CAO Zheng1, GUAN Fucheng1,2, LIU Shuxing1   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Functional Fiber and Its Composite Materials Engineering Technology Research Center of Liaoning Province, Dalian, Liaoning 116034, China
  • Received:2020-10-29 Revised:2020-11-06 Online:2021-02-15 Published:2021-02-23
  • Contact: GUO Jing

摘要:

为提高海藻酸钠基支架材料的强度和生物相容性,以海藻酸钠(SA)和磷虾蛋白(AKP)构成聚电解质复合体系,通过低温诱导相分离-化学交联法制备SA/AKP支架材料,比较不同质量分数SA/AKP溶液制备的支架材料的结构形态、力学性能、孔隙率、透气性、吸水性及生物相容性。结果表明:在SA/AKP溶液质量分数为4%时,支架孔径在20~96 μm之间,孔径大小均一,形状规整;支架材料的孔隙率、透气性、液体吸收性随SA/AKP溶液质量分数增加而降低,断裂强度和断裂伸长率随SA/AKP溶液质量分数增加而增加,在质量分数为4%时,支架材料的孔隙率为86.4%,透气率为58.9%,且具有较高的强度与伸长;支架材料的细胞毒性等级为0级,具有优异的生物安全性。

关键词: 海藻酸钠, 磷虾蛋白, 低温诱导相分离, 支架材料, 生物相容性, 医用纺织品

Abstract:

In order to improve the strength and bio-compatibility of sodium alginate based scaffold materials made from polyelectrolyte composite system with sodium alginate (SA) and krill protein (AKP), SA/AKP scaffold materials were prepared by inducing phase separation-chemical cross-linking method at low-temperature. The structural morphology, mechanical properties, porosity, air permeability, water absorption and bio-compatibility of different concentrations of SA/AKP solutions were compared. The results show that when the concentration of SA/AKP sample is 4%, the pore size of the stent is between 20 and 96 μm with uniform and regular shape. The porosity, and absorptive characteristics of liquid and air permeability of the tissue scaffold decreased with the increasing concentration of SA/AKP solutions, and the fracture strength and elongation of the scaffold increased with the increasing concentration of SA/AKP solutions. When the concentration is 4%, the porosity of the scaffold material is 86.4%, the air permeability is 58.9%, while offering high strength and elongation. The cell toxicity grade of the scaffold is 0, indicating excellent biological safety.

Key words: sodium alginate, krill protein, low temperature induced phase separation, scaffold, bio-compatibility, medical textile

中图分类号: 

  • O636.1

图1

SA/AKP支架的制备过程"

表1

细胞增殖率与毒性水平的对应关系"

细胞增殖率/% 毒性水平/级
≥100 0
75~99 1
50~74 2
25~49 3
1~24 4
0 5

图2

不同质量分数SA/AKP支架的SEM照片"

图3

不同质量分数SA/AKP支架的孔径分布图"

图4

SA和AKP以及SA/AKP支架的FT-IR光谱"

图5

不同质量分数SA/AKP支架的孔隙率和透气率"

图6

SA/AKP支架的透气性模型"

图7

不同质量分数SA/AKP支架的吸液率"

图8

SA/AKP支架的吸液模型"

图9

不同质量分数SA/AKP支架的力学性能"

图10

不同质量分数SA/AKP支架的细胞毒性"

[1] YANG W, XU H J, LAN Y, et al. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair[J]. International Journal of Biological Macromolecules, 2019,130:58-67.
pmid: 30797808
[2] 孙范忱, 郭静, 于跃, 等. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020,41(5):15-19.
SUN Fanchen, GUO Jing, YU Yue, et al. Preparation and properties of polyhydroxy fatty acid ester/sodium alginate composite electrospun nanofibers[J]. Journal of Textile Research, 2020,41(5):15-19.
[3] 王明强, 崔明洁, 蒋秋路, 等. 壳聚糖/海藻酸钠复合膜制备及性能研究[J]. 化工新型材料, 2017,45(8):59-61.
WANG Mingqiang, CUI Mingjie, JIANG Qiulu, et al. Preparation and property of chitosan/sodium alginate composite film[J]. New Chemical Materials, 2017,45(8):59-61.
[4] AYUB A D, CHIU H L, MAT YUSUF S N A, et al. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2019,47(1):353-369.
pmid: 30691309
[5] MAO X Y, LI X Y, ZHANG W J, et al. Development of microspheres based on thiol-modified sodium alginate for intestinal-targeted drug delivery[J]. ACS Applied Bio Materials, 2019,2:5810-5818.
[6] DELIA N L, SILVA R R, SARTUQUI J, et al. Development and characterisation of bilayered periosteum-inspired composite membranes based on sodium alginate-hydroxyapatite nanoparticles[J]. Journal of Colloid and Interface Science, 2020,572:408-420.
pmid: 32272315
[7] 舒华金, 吴春萱, 杨康, 等. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019,47(12):124-129.
SHU Huajin, WU Chunxuan, YANG Kang, et al. Preparation of rapid expansion alginate/silica fiber composite scaffold and application of rapid hemostatic function[J]. Journal of Materials Engineering, 2019,47(12):124-129.
[8] SOLOVIEVA E V, FEDOTOV A Y, MAMONOV V E, et al. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering[J]. Biomedical Materials, 2018,13(2):025007.
[9] YANG W, XU H J, LAN Y, et al. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair[J]. International Journal of Biological Macromolecules, 2019,130:58-67.
pmid: 30797808
[10] LI L Y, CHEN Y Z, WANG Y W, et al. Effects of concentration variation on the physical properties of alginate-based substrates and cell behavior in cul-ture[J]. International Journal of Biological Macromolecules, 2019,128:184-195.
pmid: 30684581
[11] 陈娜丽, 任亚鹏, 翁立娟, 等. 海藻酸钠的浓度对聚苯胺/海藻酸钠电化学性能的影响[J]. 精细化工, 2016,33(4):372-376.
CHEN Nali, REN Yapeng, WENG Lijuan, et al. Effect of sodium alginate concentration on the electrochemical performance of polyaniline/sodium alginate[J]. Fine Chemicals, 2016,33(4):372-376.
[12] QI R R, GUO J, LIU Y F, et al. Effects of salt content on secondary structure of protein in sodium alginate/antarctic krill protein composite system and characterization of fiber properties[J]. Dyes and Pigments, 2019,171:107686.
[13] 杨利军, 郭静, 李圣林, 等. 高强度南极磷虾蛋白/海藻复合纤维的制备与表征[J]. 复合材料学报, 2016,33(7):1524-1530.
YANG Lijun, GUO Jing, LI Shenglin, et al. Preparation and characterization of high strength antarctic krill protein/alginate composite fiber[J]. Acta Materiae Compositae Sinica, 2016,33(7):1524-1530.
[14] ZHANG R, GUO J, WU J, et al. Preparation, characterization and properties of high-salt-tolerance sodium alginate/krill protein composite fibers[J]. Fibers and Polymers, 2018,19(5):1074-1083.
[15] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273.
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian Polytechnic University, 2014,33(4):270-273.
[16] 方艳, 徐水, 吴婷芳, 等. 丝胶蛋白/羟基磷灰石/聚己内酯复合支架材料的制备及表征[J]. 材料导报, 2019,33(S2):533-537.
FANG Yan, XU Shui, WU Tingfang, et al. Preparation and characterization of sericin/hydroxyapatite/polycaprolactone composite scaffold materials[J]. Materials Reports, 2019,33(S2):533-537.
[17] 张珂, 隋淑英, 朱平, 等. 海藻酸钠/魔芋葡甘露聚糖复合海绵材料的制备及性能[J]. 化工进展, 2017,36(11):4176-4181.
ZHANG Ke, SUI Shuying, ZHU Ping, et al. Preparation and performance of sodium alginate/KGM sponge[J]. Chemical Industry and Engineering Progress, 2017,36(11):4176-4181.
[18] WU C N, FUH S C, LIN S P, et al. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing[J]. Biomacromolecules, 2018,19(2):544-554.
pmid: 29334612
[19] LEE W, DEBASITIS J C, LEE V K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication[J]. Biomaterials, 2009,30(8):1587-1595.
doi: 10.1016/j.biomaterials.2008.12.009 pmid: 19108884
[20] LAN Y, LI W, GUO R, et al. Preparation and characterisation of vancomycin-impregnated gelatin microspheres/silk fibroin scaffold[J]. Journal of Biomaterials Science, Polymer Edition, 2014,25(1), 75-87.
[1] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[2] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[3] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
[4] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[5] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[6] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[7] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[8] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[9] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[10] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(09): 191-200.
[11] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[12] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168-174.
[13] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[14] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
[15] 姚强, 郭静, 吴静. 化学交联改性海藻酸钠/磷虾蛋白复合纤维的制备[J]. 纺织学报, 2019, 40(02): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!