纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 74-79.doi: 10.13475/j.fzxb.20201008207
HUANG Di1,2, LI Fang1,2, LI Gang1,2()
摘要:
为研制具有优良力学性能和抗血液渗透性能的人工心脏瓣膜,采用涤纶(PET)长丝和脱胶蚕丝(SF),选取不同组织结构、纱线线密度和织物经纬密等参数,在小型织机上通过优化设计试验制备了PET/SF机织人工心脏瓣膜织物(AHVF),并探讨对人工瓣膜的定制化设计。结果表明:制备的AHVF的厚度小于(0.52±0.1) mm,具有良好的亲水性,水接触角为60°±1.2°,接近于自体心脏瓣膜;AHVF的力学性能具有各向异性特征,经向弹性模量为60~100 MPa, 经向断裂强度为20~40 MPa,纬向弹性模量为7~50 MPa,纬向断裂强度为7.5~20 MPa,水渗透性低于300 mL/(cm 2·min),达到了心脏瓣膜的标准,具备作为心脏瓣膜的可能。
中图分类号:
[1] | DOHMEN P M, KONERTZZ W. Tissue-engineered heart valve scaffolds[J]. Ann Thorac Cardiovasc Surg, 2009,15(6):362-367. |
[2] | MURAT G, HOANG D L, JASON A B. Shear-thinning hydrogels for biomedical applications[J]. Soft Matter, 2011,8(2):260-272. |
[3] | WANG H, MORTEN B H. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels[J]. Advanced Materials, 2011,23(12):119-124. |
[4] | SEWELL-LOFTIN M K, CHUN Y, KHADEMHO-SSEINI A. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology[J]. Journal of Cardiovascular Translational Research, 2011,4(5):658-671. |
[5] |
PADALA Muralidhar, KEELING William Brent, GUYTON Robert A, et al. Innovations in therapies for heart valve disease[J]. Circulation Journal, 2011,75(5):1028-1041.
doi: 10.1253/circj.cj-11-0289 pmid: 21478626 |
[6] | FREDERICK J S, ROBERT J L. Calcification of tissue heart valve substitutes: progress toward understanding and prevention[J]. Annals of Thoracic Surgery, 2005,79(3):1072-1080. |
[7] | JONATHAN T B, GRETCHEN J M, LAURA A H. Aortic valve disease and treatment: the need for naturally engineered solutions[J]. Advanced Drug Delivery Reviews, 2011,63(4/5):242-268. |
[8] | VINEET R J, AVRUM I G. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology[J]. American Journal of Pathology, 2007,171(5):1407-1418. |
[9] | 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020,41(9):191-200. |
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020,41(9):191-200. | |
[10] | 刘泽堃, 李刚, 李毓陵, 等. 生物医用纺织人造血管的研究进展[J]. 纺织学报, 2017,38(7):155-163. |
LIU Zekun, LI Gang, LI Yuling, et al. Research progress of biomedical textile artificial blood vessel[J]. Journal of Textile Research, 2017,38(7):155-163. | |
[11] | XIE M, LI Y, ZHAO Z, et al. Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2[J]. Materials Letters, 2016,167:175-178. |
[12] |
CARUBELLI I, SARATHCHANDRA P, et al. The potential of anisotropic matrices as substrate for heart valve engineering[J]. Biomaterials, 2014,35(6):1833-1844.
pmid: 24314554 |
[13] |
LIU Z, ZHENG Z, CHEN K, et al. A heparin-functionalized woven stent graft for endovascular exclusion[J]. Colloids and Surfaces B: Biointerfaces. 2019,180:118-126.
doi: 10.1016/j.colsurfb.2019.04.027 pmid: 31035055 |
[14] | LI G, LIU Y, LAN P, et al. A prospective bifurcated biomedical stent with seamless woven structure[J]. Journal of The Textile Institute, 2013,104(9):1017-1023. |
[15] | 李刚, 李毓陵, 陈旭炜, 等. 分叉人造血管的制备技术研究[J]. 产业用纺织品, 2008,26(8):9-12. |
LI Gang, LI Yuling, CHEN Xuwei, et al. Preparation technology of bifurcated artificial blood vessel[J]. Industrial Textiles, 2008,26(8):9-12. | |
[16] | 刘泽堃, 李刚, 李毓陵, 等. 纤维基腔内隔绝分叉机织人造血管的研究[J]. 产业用纺织品, 2017,35(6):6-13. |
LIU Zekun, LI Gang, LI Yuling, et al. Study on fiber-based endovascular graft exclusion with bifurcations[J]. Technical Textiles, 2017,35(6):6-13. | |
[17] |
LIU Z, LI G, ZHENG Z, et al. Silk fibroin-based woven endovascular prosjournal with heparin surface modifica-tion[J]. Journal of Materials Science Materials in Medicine, 2018,29(4):46.
doi: 10.1007/s10856-018-6055-3 pmid: 29651619 |
[18] | GUO F, JIAO K, BAI Y, et al. Novel transcatheter aortic heart valves exhibiting excellent hemodynamic performance and low-fouling property[J]. Journal of Materials Science & Technology, 2019,35(1):207-215. |
[1] | 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112. |
[2] | 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95. |
[3] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[4] | 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52. |
[5] | 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66. |
[6] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[7] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[8] | 张婷婷, 张杰, 田新宇, 陈祯, 任玮. 气密型化学防护服研究进展[J]. 纺织学报, 2020, 41(12): 174-181. |
[9] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[10] | 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47. |
[11] | 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121. |
[12] | 黄阳阳, 刘伟, 华英, 赵中琦, 徐劲. 幼童用智能示警蚕丝被的研发[J]. 纺织学报, 2020, 41(10): 150-157. |
[13] | 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107. |
[14] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[15] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
|