纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 41-46.doi: 10.13475/j.fzxb.20201008606

• 纤维材料 • 上一篇    下一篇

丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应

杨亚1,2, 闫凤祎2, 王卉2, 张克勤2()   

  1. 1.常熟理工学院 纺织服装与设计学院, 江苏 常熟 215500
    2.苏州大学 纺织与服装工程学院, 江苏 苏州 215000
  • 收稿日期:2020-10-30 修回日期:2020-11-13 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 张克勤
  • 作者简介:杨亚(1990—),女,讲师,博士。主要研究方向为丝素蛋白生物医用材料、纳米材料和3D打印的研究。
  • 基金资助:
    江苏省基础研究计划面上研究项目(BK20161253)

Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites

YANG Ya1,2, YAN Fengyi2, WANG Hui2, ZHANG Keqin2()   

  1. 1. School of Textile Garment and Design, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China
  • Received:2020-10-30 Revised:2020-11-13 Online:2021-02-15 Published:2021-02-23
  • Contact: ZHANG Keqin

摘要:

为进一步了解仿生材料结构与功能的关系,为体内骨整合设计一个有利的种植微环境,通过电化学沉积技术调控电解液中丝素蛋白(SF)的质量浓度,制备了具有纳微米多级结构的丝素蛋白/磷酸八钙(SF/OCP)复合涂层。研究了丝素蛋白质量浓度对SF/OCP复合涂层的表面形貌、力学性能、蛋白质吸附以及细胞增殖行为的影响。结果表明:随电解液中丝素蛋白质量浓度的增加,涂层表面孔洞直径由(19.96 ± 6.96) μm减小至(1.56 ± 0.22) μm, OCP晶体宽度减小至纳米级别((26.84 ± 8.2) nm);与纯OCP涂层相比,SF/OCP复合涂层(SF质量浓度为1.0 mg/mL)的弹性模量和硬度分别增加了约1.5和4.3倍;SF/OCP复合涂层选择性地增强了纤连蛋白(Fn)的吸附,经7 d的细胞培养后,SF/OCP复合涂层(SF质量浓度为1.0 mg/mL)表面的细胞活力是纯OCP涂层上的1.28倍。

关键词: 丝素蛋白, 磷酸八钙, 蛋白质吸附, 细胞培养, 仿生材料

Abstract:

To further understand the structure-function relationships for biomimetic materials for the purpose of designing a favorable implant microenvironment for osseointegration in vivo, the nano/micro hierarchical structure of silk fibroin (SF)/octacalcium phosphate (OCP) composite coating was constructed by controlling simply the SF concentration of the electrolyte during the electrochemical deposition process. The influence of SF concentration on surface morphology, mechanical property, protein adsorption and cell proliferation were studied. The results show that the pore diameter of the coating surface decreases from (19.96±6.96) μm to (1.56±0.22) μm and the crystal width decreases to the nano-scale with SF concentration increasing in electrolyte. Comparing the pure OCP coating, the elastic modulus and hardness of the SF/OCP composite coating (1.0 mg/mL SF) increase approximately 1.5 times and 4.3 times, respectively. The SF/OCP composite coating selectively enhances fibronectin (Fn) adsorption, and the cell viability on the SF/OCP composite coating (1.0 mg/mL SF) is 1.28 times that on the pure OCP coating after culturing for 7 days.

Key words: silk fibroin, octacalcium phosphate, protein adsorption, cell culture, biomimetic material

中图分类号: 

  • TS101.4

图1

纯OCP涂层和SF/OCP复合涂层电镜照片"

图2

放大的纯OCP涂层和SF/OCP复合涂层电镜照片"

图3

孔洞直径和OCP晶带宽度随丝素蛋白质量浓度的变化"

图4

SF/OCP复合涂层电化学沉积机制"

表1

制备涂层的弹性模量和硬度"

样品名称 弹性模量 硬度
OCP涂层 8.56 ± 0.62 0.011 ± 0.001
SF/OCP涂层 12.84 ± 1.34 0.047 ± 0.011

图5

BSA在纯Ti基底、纯OCP涂层和SF/OCP 复合涂层上的吸附量 注:*表示与纯Ti基底相比,p<0.05;#表示与纯OCP涂层相比,p<0.05。"

图6

Fn在纯Ti基底、纯OCP涂层和SF/OCP复合涂层上的吸附量 注:*表示与纯Ti基底相比, p<0.05; #表示与纯OCP涂层相比, p<0.05。"

图7

HUMSCs在纯OCP涂层和SF/OCP复合涂层上培养1、3和7 d时的细胞活力 注:*表示涂层表面细胞活力的显著性差异,p<0.05。"

[1] SAI Y K, SHIWAKU Y K, ANADA T K, et al. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro[J]. Acta Biomaterialia, 2018,69:362-371.
[2] WANG H, LIU X Y, CHUAH Y J, et al. Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures[J]. Chemical Communications, 2013,49(14):1431-1433.
doi: 10.1039/c2cc38779d pmid: 23321676
[3] SHAO Z, VOLLRATH F. Materials: surprising strength of silkworm silk[J]. Nature, 2002,418(6899):741.
[4] RICHERT L, VARIOLA F, ROSEI F, et al. Adsorption of proteins on nanoporous Ti surfaces[J]. Surface Science, 2010,604(17):1445-1451.
[5] SUN M, DENG J, TANG Z, et al. A correlation study of protein adsorption and cell behaviors on substrates with different densities of PEG chains[J]. Colloids & Surfaces B: Biointerfaces, 2014,122(18):134-142.
[6] CARTER D C, HE X M, MUNSON S H, et al. Three-dimensional structure of human serum albumin[J]. Science, 1989,244(4909):1195-1198.
[7] DOCKAL M, CARTER D C, RUKER F. The three recombinant domains of human serum albumin[J]. Journal of Biological Chemistry, 1999,274:29303-29310.
[8] WILSON C J, CLEGG R E, LEAVESLEY D I, et al. Mediation of biomaterial-cell interactions by adsorbed proteins: a review[J]. Tissue Engineering, 2005,11(2):1-18.
[9] ASURI P, BALE S S, KARAJANAGI S S, et al. The protein-nanomaterial interface[J]. Current Opinion in Biotechnology, 2006,17(6):562-568.
doi: 10.1016/j.copbio.2006.09.002
[10] MURUGAN R, RAMAKRISHNA S. Development of nanocomposites for bone grafting[J]. Composites Science & Technology, 2005,65(15):2385-2406.
[11] WEBSTER T J, ERGUN C, DOREMUS R H, et al. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000,21(17):1803-1810.
pmid: 10905463
[12] LIU H, WEBSTER T J. Nanomedicine for implants: a review of studies and necessary experimental tools[J]. Biomaterials, 2007,28(2):354-369.
doi: 10.1016/j.biomaterials.2006.08.049 pmid: 21898921
[13] FELGUEIRAS H P, MURTHY N S, SOMMERFELD S D, et al. Competitive adsorption of plasma proteins using a quartz crystal microbalance[J]. ACS Applied Materials & Interfaces, 2016,8(21):13207-13217.
doi: 10.1021/acsami.5b12600 pmid: 27144779
[14] KANDORI K, HAMAZAKI H, MATSUZAWA M, et al. Selective adsorption of acidic protein of bovine serum albumin onto sheet-like calcium hydroxyapatite particles produced by microreactor[J]. Advanced Powder Technology, 2014,25(1):354-359.
[15] SELA M N, BADIHI L, ROSEN G, et al. Adsorption of human plasma proteins to modified titanium surfaces[J]. Clinical Oral Implants Research, 2010,18(5):630-638.
doi: 10.1111/j.1600-0501.2007.01373.x pmid: 17484735
[16] GONZÁLEZ-GARCÍA C, SOUSA S R, MORATAL D, et al. Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organi-zation[J]. Colloids & Surfaces B: Biointerfaces, 2010,77(2):181-190.
pmid: 20185279
[17] KHANG D, KIM S Y, LIU-SNYDER P, et al. Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy[J]. Biomaterials, 2007,28(32):4756-4768.
pmid: 17706277
[1] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[2] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[3] 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71.
[4] 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19.
[5] 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12.
[6] 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30.
[7] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
[8] 王宗乾, 王邓峰, 周杭, 李俊. 超声波辅助对乳化交联工艺制备丝素蛋白微球形貌的影响[J]. 纺织学报, 2019, 40(02): 119-124.
[9] 周倩 袁久刚 李澜 王平 王强. 丝素蛋白的磷酸化及其仿生矿化膜的制备[J]. 纺织学报, 2018, 39(11): 8-13.
[10] 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19.
[11] 姚勇波 颜志勇 李喆 易洪雷 张玉梅 王华平. 牵伸倍率分配对纤维素/丝素蛋白共混纤维形态结构的影响[J]. 纺织学报, 2018, 39(06): 13-18.
[12] 李鹏飞 邓桦 马军 刘红斌 刘珍珠. 再生丝素蛋白溶液脱盐新工艺及其应用[J]. 纺织学报, 2018, 39(05): 20-24.
[13] 王宗乾 杨海伟 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(04): 69-76.
[14] 吴惠英. 脱胶工艺对蚕丝溶解及再生丝素蛋白纤维性能的影响[J]. 纺织学报, 2017, 38(08): 75-80.
[15] 周步光 张宇慧 王平 王强 范雪荣. 丝素/丙烯酰胺/丙烯酸吸水复合材料的紫外光辐照法制备[J]. 纺织学报, 2017, 38(05): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!