纺织学报 ›› 2021, Vol. 42 ›› Issue (02): 180-184.doi: 10.13475/j.fzxb.20201008705

• 机械与器材 • 上一篇    下一篇

转杯纺纱器气流场形成机制的数值分析

史倩倩1, 王姜1, 张玉泽1, 林惠婷2, 汪军1,3()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.泉州师范学院 纺织与服装学院,福建 泉州 362000
    3.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2020-10-30 修回日期:2020-11-07 出版日期:2021-02-15 发布日期:2021-02-23
  • 通讯作者: 汪军
  • 作者简介:史倩倩 (1992—),女,博士生。研究方向为转杯纺气流流动和纤维运动。
  • 基金资助:
    国家自然科学基金项目(11802161);福建省自然科学基金青年创新基金项目(2020J05160)

Numerical analysis on formation mechanism of airflow field in rotor spinning unit

SHI Qianqian1, WANG Jiang1, ZHANG Yuze1, LIN Huiting2, WANG Jun1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. College of Textile and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    3. Key Laboratory of Textile Science & Technology, Ministry of Education, Shanghai 201620, China
  • Received:2020-10-30 Revised:2020-11-07 Online:2021-02-15 Published:2021-02-23
  • Contact: WANG Jun

摘要:

转杯纺纱机在正常工作时纺纱器中的气流场主要受气泵抽气机制和转杯旋转机制影响,为研究这2种机制对纺纱器中气流场形成的作用,设计了3种对应不同作用机制的工况,且基于计算流体动力学方法对这3种工况中的流体域进行了数值模拟,并对其气流场的速度分布和压力分布特征进行了分析。数值计算结果表明:转杯纺纱器中的气流场是由抽气机制和旋转机制共同决定的;抽气机制为纤维输送提供了必要的气流速度和负压条件,旋转机制有利于纤维向转杯滑移面的顺利转移和纤维的有序排列,以及其向凝聚槽的凝聚;在这2种机制的共同作用下形成了转杯纺独特的气流纺纱环境。

关键词: 转杯纺, 气流场, 数值模拟, 抽气机制, 旋转机制, 流场分布

Abstract:

The airflow field in a rotor spinning unit under a normal working condition is mainly affected by the air suction mechanism and rotor rotation mechanism. In order to investigate the contribution of the two mechanisms to the formation of airflow field in the rotor spinning unit, three cases corresponding to different operating conditions were established for investigation, and the fluid domain in the three cases based on the computational fluid dynamics were numerically simulated. The velocity distribution and air pressure distribution of the airflow field in three cases were also analyzed and discussed. Numerical simulation results show that the airflow field in the rotor spinning unit is determined by the air suction at rotor outlet and the high-speed rotor rotation. The air suction mechanism provides the necessary air velocity and negative pressure environment for fiber's transportation. The rotation mechanism assists in smooth transfer of the fibers to the rotor slide wall, the ordered arrangement of fibers, and the accumulation of the fibers to rotor groove. It is under the joint action of the two mechanisms that a unique spinning environment where fibers are driven using air for rotor spinning is formed.

Key words: rotor spinning, airflow field, numerical simulation, air suction mechanism, rotor rotation mechanism, airflow distribution

中图分类号: 

  • TS111.8

图1

转杯纺纱器示意图"

表1

工况设计"

工况
编号
作用机制 转杯出口
负压/Pa
转杯旋转速
度/(r·min-1)
1 只抽不转 -5 500 -
2 只转不抽 - 30 080
3 既抽又转 -5 700 30 080

图2

计算域几何模型图"

图3

3种网格的独立性验证"

图4

计算域网格划分及边界条件示意图"

图5

3种工况下气流场速度矢量分布图"

图6

3种工况下气流场静压分布图"

图7

3种工况下y=10 mm处X轴上气压分布"

[1] LAWRENCE C A, CHEN K Z. Rotor-spinning[J]. Textile Progress, 1984,13(4):1-73.
[2] KWASNIAK J. An investigation of a new method to produce fancy yarns by rotor spinning[J]. Journal of the Textile Institute Proceedings & Abstracts, 1996,87(2):321-334.
[3] MATSUMOTO Y I, FUSHIMI S, SAITO H, et al. Twisting mechanisms of open-end rotor spun hybrid yarns[J]. Textile Research Journal, 2002,72(8):735-740.
[4] CHENG K B, MURRAY R. Effects of spinning conditions on structure and properties of open-end cover-spun yarns[J]. Textile Research Journal, 2000,70(8):690-695.
[5] KONG L X, PLATFOOT R A. Two-dimensional simulation of air flow in the transfer channel of open-end rotor spinning machines[J]. Textile Research Journal, 1996,66(10):641-650.
[6] YANG X W, CHEN H L, WU Z Y, et al. Numerical simulation of 3D flow in rotation cup of rotor spin-ning[J]. Applied Mechanics & Materials, 2011,80/81:1145-1149.
[7] 肖美娜, 窦华书, 武传宇, 等. 纺纱转杯内气流流动特性的数值分析[J]. 纺织学报, 2014,35(12):136-141.
XIAO Meina, DOU Huashu, WU Chuanyu, et al. Numerical simulations of air flow behavior in spinning rotor[J]. Journal of Textile Research, 2014,35(12):136-141.
[8] LIN H, ZENG Y, WANG J. Computational simulation of air flow in the rotor spinning unit[J]. Textile Research Journal, 2016,86(2):115-126.
[9] LIN H, BERGADA J M, ZENG Y, et al. Rotorspinning transfer channel design optimization via computational fluid dynamics[J]. Textile Research Journal, 2018,88(11):1244-1262.
[10] AKANKWASA N T, LIN H, ZHANG Y, et al. Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box[J]. Textile Research Journal, 2018,88(3):237-253.
[11] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 120-137.
WANG Fujun. Computational fluid dynamics analysis: CFD software principles and applications[M]. Beijing: Tsinghua University Press, 2004: 120-137.
[1] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[2] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144.
[3] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[4] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[5] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[6] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[7] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[8] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[9] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[10] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[11] 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[12] 杨瑞华, 徐亚亚, 韩瑞叶, 薛元, 高卫东. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(03): 44-48.
[13] 林惠婷, 高备, 张玉泽, 史倩倩, 汪军. 转杯纺旁路通道设计对成纱质量的影响[J]. 纺织学报, 2019, 40(02): 153-158.
[14] 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[15] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!