纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 97-102.doi: 10.13475/j.fzxb.20201103406

• 染整与化学品 • 上一篇    下一篇

超临界CO2流体处理时间对二醋酯纤维结构与性能的影响

朱维维1,2, 管丽媛1,2, 龙家杰1,2, 施楣梧1,2,3()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.中国纺织工程学会超临界流体无水绳状匹染技术科研基地(苏州大学), 江苏 苏州 215123
    3.军事科学院系统工程研究院 军需工程技术研究所, 北京 100010
  • 收稿日期:2020-11-16 修回日期:2021-09-15 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 施楣梧
  • 作者简介:朱维维(1989—),女,博士。主要研究方向为基于超临界CO2流体的功能性纺织品开发。

Effects of supercritical CO2 fluid treatment time on structure and properties of diacetate fibers

ZHU Weiwei1,2, GUAN Liyuan1,2, LONG Jiajie1,2, SHI Meiwu1,2,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. CTES Scientific Research Base for Waterless Coloration with Supercritical Fluid(Soochow University), Suzhou, Jiangsu 215123, China
    3. Institute of Quartermaster Engineering & Technology, Institute of System Engineering, Academy of Military Sciences, Beijing 100010, China
  • Received:2020-11-16 Revised:2021-09-15 Published:2021-12-15 Online:2021-12-29
  • Contact: SHI Meiwu

摘要:

为将超临界CO2流体应用于二醋酯纤维的功能化加工,赋予二醋酯纤维高附加值,借助扫描电子显微镜、傅里叶红外光谱仪、X射线多晶衍射仪、热重差热分析仪、万能材料试验机探讨了超临界CO2流体处理时间对二醋酯纤维表观形态、化学结构、聚集态结构及热性能和拉伸断裂性能的影响。结果表明:经超临界CO2流体处理60、90、120 min后,二醋酯纤维表面颗粒状杂质被去除,其分子链排列规整度下降,结晶度由未处理纤维的39.41%分别下降至35.33%、31.57%、36.10%,纤维断裂强力呈先下降后增加趋势;当处理时间为120 min时,二醋酯纤维分子链间氢键作用强度略微降低,其熔点基本不变,高温下纤维质量损失率由未处理纤维的89.52%增加至95.66%。

关键词: 超临界CO2流体, 二醋酯纤维, 表观形态, 聚集态结构, 热稳定性, 断裂强力

Abstract:

In order to functionally finish diacetate fibers using supercritical CO2 fluid technology, which gives high added value to diacetate fibers, the effects of supercritical CO2 fluid treatment time on surface morphology, chemical structure,aggregation structure,thermal property and tensile strength of diacetate fiber were investigated by means of scanning electron microscope, Fourier infrared spectrometer, X-ray polycrystalline diffractometer, thermogravimetric analyzer, differential scanning calorimetry and universal strength tester. Results show the particulate impurities are removed on the surface of the diacetate fiber treated by supercritical CO2 fluid for 60, 90 and 120 min, and the order of the molecular chain decreased, as well as the crystallinity of diacetate fibers decreases from 39.41% of untreated fiber to 35.33%, 31.57%, 36.10% respectively, and the breaking strength of fiber decreased first and then increased. After 120 min of supercritical CO2 fluid treatment, the breaking strength of hydrogen bond between molecular chains of diacetate fibers shows a slight decrease. The melting point of the diacetate fibers is basically the same, and the mass loss rate of fiber increase from 89.52% to 95.66% in high temperature.

Key words: supercritical CO2 fluid, diacetate fiber, surface morphology, aggregation structure, thermal stability, breaking strength

中图分类号: 

  • TS195.6

图1

超临界CO2流体处理不同时间后二醋酯纤维的SEM照片(×1 000)"

图2

超临界CO2流体处理不同时间后二醋酯纤维的红外光谱图"

图3

超临界CO2流体处理不同时间后二醋酯纤维的XRD图谱"

表1

超临界CO2流体处理不同时间后二醋酯纤维的热降解性能分析结果"

处理时间/
min
起始分解
温度/℃
最大分解速率
对应温度/℃
质量损
失率/%
0 341.0 366.3 89.52
60 341.6 367.7 91.40
90 341.8 367.6 89.64
120 338.5 363.3 95.66

图4

超临界CO2流体处理不同时间后二醋酯纤维的热降解曲线"

表2

超临界CO2流体处理不同时间后二醋酯纤维的DSC测试数据"

处理
时间/
min
第1个峰 第2个峰 第3个峰 玻璃化
转变温
度/℃
温度/
热焓/
(J·g-1)
温度/
热焓/
(J·g-1)
温度/
热焓/
(J·g-1)
0 91.46 62.724 2 204.27 2.717 9 233.35 6.807 6 194.62
60 88.85 85.406 1 201.37 2.513 0 233.12 6.416 9 195.98
90 73.61 19.074 3 202.92 2.702 3 233.17 6.249 1 196.59
120 102.41 102.273 2 202.57 2.762 4 233.48 6.418 8 194.80

图5

超临界CO2流体处理不同时间后二醋酯纤维的升温曲线"

表3

超临界CO2流体处理不同时间后二醋酯纤维的拉伸断裂强力"

处理时间/min 断裂强力/cN 断裂强力变化率/%
0 3.20
60 2.92 -8.75
90 3.48 8.75
120 3.35 4.69
[1] GIORGI M R D, CADONI E, MARICCA D, et al. Dyeing polyester fibres with disperse dyes in supercritical CO2[J]. Dyes and Pigments, 2000, 45(1):75-79.
doi: 10.1016/S0143-7208(00)00011-5
[2] SHINODA T, TAMURA K. Solubilities of C.I. Disperse Orange 25 and C.I. Disperse Blue 354 in supercritical dioxide[J]. Journal of Chemical & Engineering Data, 2003, 48(4):869-873.
doi: 10.1021/je0256131
[3] LUO X J, WHITE J, THOMPSON R, et al. Novel synjournal of dyes for clean dyeing of wool and cotton fibres insupercritical carbon dioxide[J]. Journal of Cleaner Production, 2018, 199:1-10.
doi: 10.1016/j.jclepro.2018.07.158
[4] LIU S Q, CHEN Z Y, SUN J P, et al. Ecofriendly pretreatment of grey cotton fabric with in enzymes supercritical carbon dioxide fluid[J]. Journal of Cleaner Production, 2016, 120:85-94.
doi: 10.1016/j.jclepro.2016.02.006
[5] LONG J J, CUI C L, WANG L, et al. Effect of treatment pressure on wool fiber in supercritical carbon dioxide fluid[J]. Journal of Cleaner Production, 2013, 43:52-58.
doi: 10.1016/j.jclepro.2013.01.002
[6] DAS M. Biocomposites for high-performance applica-tions[M]. London: Woodhead Publishing, 2017: 23-55.
[7] WORKT R W. The effect of variations in degree of structural order on some physical properties of celluloseand cellulose acetate yarns[J]. Textile Research Journal, 1949, 19(7):381-393.
doi: 10.1177/004051754901900701
[8] 朱维维, 蔡冲, 张聪, 等. 超临界CO2处理温度对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2020, 41(3):8-14.
ZHU Weiwei, CAI Chong, ZHANG Cong, et al. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber[J]. Journal of Textile Research, 2020, 41(3):8-14.
[9] MARSAL A, CELMA P J, COT J, et al. Supercritical CO2 extraction a clean degreasing process in the leather industry[J]. The Journal of Supercritical Fluids, 2000, 16(3):217-223.
doi: 10.1016/S0896-8446(99)00031-5
[10] GAAN S, MAUCLAIRE L, RUPPER P, et al. Thermal degradation of cellulose acetate in presence of bis-phosphoramidates[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(1):33-41.
doi: 10.1016/j.jaap.2010.10.005
[11] RAMESH S, SHANTI R, MORRIS E, et al. Plasticizing effect of 1-allyl-3-methylimidazolium chloride in cellulose acetate based polyer electrolytes[J]. Carbohydrate Polymers, 2012, 87(4):2624-2629.
doi: 10.1016/j.carbpol.2011.11.037
[12] 何建新, 唐予远, 王善元. 醋酸纤维素的结晶结构与性能[J]. 纺织学报, 2008, 29(10):12-16.
HE Jianxin, TANG Yuyuan, WANG Shanyuan. Crystalline structure and thermal property of cellulose acetate[J]. Journal of Textile research, 2008, 29(10):12-16.
[13] 侯兵兵. 基于服用的醋酸纤维丝束理化性能及染色研究[D]. 上海:东华大学, 2017: 14.
HOU Bingbing. Study on physic-chemical and dyeing of properties cllulose acetate tow based on wearability[D]. Shanghai:Donghua University, 2017: 14.
[14] 梅洁, 欧义芳, 陈家楠. 醋酸纤维素取代基分布与性质的关系[J]. 纤素科学与技术, 2002(1):12-19.
MEI Jie, OU Yifang, CHEN Jianan. Relationship between substituent distribution and property for cellulose acetate[J]. Journal of Cellulose Science and Technology, 2002(1):12-19.
[1] 黄宏博, 韩宗保, 郭恒, 姚金波, 姜会钰, 夏治刚, 王运利. 热湿处理对免烫羊毛织物保形性能的影响[J]. 纺织学报, 2021, 42(12): 119-124.
[2] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[3] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[4] 郭恒, 黄宏博, 姚金波, 姜会钰, 夏治刚, 王运利. 家庭洗涤对免烫棉织物性能的影响[J]. 纺织学报, 2021, 42(07): 129-136.
[5] 王瑞丰, 李敏, 田安丽, 王春霞, 付少海. 分散黄6GSL晶型与其分散体热稳定性的关系[J]. 纺织学报, 2021, 42(05): 96-102.
[6] 杨婷婷, 高远博, 郑毅, 王学利, 何勇. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(04): 1-7.
[7] 郑森森, 郭涛, 董杰, 王士华, 张清华. 含咪唑结构高强高模聚酰亚胺纤维的制备及其结构与性能[J]. 纺织学报, 2021, 42(02): 7-11.
[8] 温馨, 张须臻, 李勇, 黄文健, 卢晨. 水引发L-丙交酯开环聚合工艺研究[J]. 纺织学报, 2020, 41(12): 21-25.
[9] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[10] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[11] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
[12] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[13] 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
[14] 林启松 江力 汪凯 张顺花. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018, 39(08): 22-26.
[15] 高娜 李强 徐伯俊 刘新金 王广斌. 不同引纱方法对云纹纱成纱外观及质量的影响[J]. 纺织学报, 2017, 38(12): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[3] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[4] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[5] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .
[6] 林红;陈宇岳;任煜;仲志锋;王红卫. 经等离子体处理的蚕丝纤维结构与性能[J]. 纺织学报, 2004, 25(03): 9 -10 .
[7] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[8] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[9] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .