纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 150-156.doi: 10.13475/j.fzxb.20201103507

• 服装工程 • 上一篇    下一篇

西服定制吊挂生产线的筛选秩序优化

谢子昂1, 杜劲松1,2(), 余雅芸1, 陈清婷1, 费中华3   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室,上海 200051
    3.浙江森马服饰股份有限公司, 浙江 温州 362000
  • 收稿日期:2020-11-16 修回日期:2021-05-27 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 杜劲松
  • 作者简介:谢子昂(1996—),男,硕士生。主要研究方向为服装生产管理。
  • 基金资助:
    上海市设计学Ⅳ类高峰学科资助项目(DD17002);上海市经济与信息化委员项目(2019-GYHLW-004)

Optimization of components screening for hanging production line in suit mass customization

XIE Ziang1, DU Jinsong1,2(), YU Yayun1, CHEN Qingting1, FEI Zhonghua3   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Zhejiang Semir Garment Co., Ltd., Wenzhou, Zhejiang 362000, China
  • Received:2020-11-16 Revised:2021-05-27 Published:2021-10-15 Online:2021-10-29
  • Contact: DU Jinsong

摘要:

针对西服大规模个性化定制中的服装部件间匹配周期长,筛选区的部件积压严重的现象,从优化西服投产秩序出发,构建部件同步生产模型,减少服装部件匹配时间和调动次数。本研究根据企业实际情况,采用遗传算法优化订单的投产安排,对西服生产车间中的48个款式、200件订单、36个工位等生产要素进行模拟仿真。实验结果表明:优化前投产规则的订单完成时间为26 784 s,优化后为25 134 s,效率提升了6.2%。采用优化后投产规则与吊挂生产线调度优化相结合的方式更能显著减少筛选区在制品数量,在制品部件积压峰值数由18件降低至9件,订单完成时间从原来的25 134 s降低至23 035 s,筛选区内平均调动在制品次数由2.89次减少至1.925次。

关键词: 西服定制, 服装大规模定制, 遗传算法, 吊挂生产线

Abstract:

In order to solve the asynchronous production of each component of suit customization orders, and reduce the backlogs in screening area before assembly in cellular manufacturing mode of suit mass customization, an order sequencing model was established based on cellular manufacturing line, and the genetic algorithm was designed to optimize the order sequence, reduce the matching operations and to shorten the life cycle of customized orders. Then, simulations were conduct based on the real enterprise data including the 48 suit styles, 200 pieces orders, 4 hanging production lines, 36 workstations and the layout of the workshop. The result shows that the orders completion time of ordinary rule is 26 784 s and the optimization rule is 25 134 s, the efficiency improves 6.2%. The backlogs in store area are further improved by introducing the line scheduling methods: the backlogs is reduced from 18 to 9 pieces, completion time is reduced from 25 134 s to 23 035 s, the average movement of components in store area is reduced form 2.89 to 1.925.

Key words: suit customization, garment mass customization, genetic algorithm, hanging production line

中图分类号: 

  • TS941.62

图1

西服定制吊挂生产线组织结构"

表1

可配置西服款式部件工艺清单"

工位
编号
部件加工内容 吊挂生产线 工时/s
1~2 前片加工 前片

吊挂生产线Ⅰ
253
3~4 嵌袋加工 357
5 贴袋加工 146
6~7 手巾袋/假手巾袋 334/171
8~9 前片胸衬 261
10~11 直型挂面/弯型挂面 里料+挂面

吊挂生产线Ⅱ
185/305
12~14 手巾袋/嵌袋
手巾袋/贴袋
假手巾袋/嵌袋
514
180
362
15~16 上挂面(直)/上挂面(弯) 354/298
17~18 前片+挂面 248
19 后开衩 后片+领+袖

吊挂生产线Ⅲ
128
20 后背中缝 125
21~22 平驳领/戗驳领/
青果领
250/288
/210
23~26 袖子 648
27~29 摆缝开衩/肩缝
摆缝不开衩/肩缝
组装

吊挂生产线Ⅳ
426
495
30~31 组装平驳领/戗驳领/
青果领
308/308
/201
32~34 组装袖子 622
35-36 钉扣 256

图2

一般投产规则的筛选区积压情况"

图3

优化投产规则的筛选区积压情况"

图4

吊挂生产线调度优化后的暂存区积压情况"

[1] 陈洪倩, 陈雁, 丁佳, 等. 服装吊挂线生产组织分析[J]. 丝绸, 2012, 49(1):30-32.
CHEN Hongqian, CHEN Yan, DING Jia, et al. Analysis of garment hanging production line organiza-tion[J]. Journal of Silk, 2012, 49(1):30-32.
[2] LI X, JIANG T, RUIZ R. Heuristics for periodical batch job scheduling in a MapReduce computing frame-work[J]. Information Sciences, 2016, 326:119-33.
doi: 10.1016/j.ins.2015.07.040
[3] 梁艳杰, 杨明顺, 高新勤, 等. 加工与装配车间集成调度的多目标优化模型[J]. 计算机工程与应用, 2016, 52(10):247-253.
LIANG Yanjie, YANG Mingshun, GAO Xinqin, et al. Multi-objective optimizing model for solving mixed modelshop of fabrication and assembly[J]. Computer Engineering and Applications, 2016, 52(10):247-253.
[4] 曾强, 杨育, 王小磊, 等. 并行机作业车间等量分批多目标优化调度[J]. 计算机集成制造系统, 2011, 17(4):816-825.
ZENG Qiang, YANG Yu, WANG Xiaolei, et al. Parallel machine job shop equal batch multi-objective optimization scheduling[J]. Computer Integrated Manufacturing System, 2011, 17(4):816-825.
[5] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10):144-149.
XIE Ziang, DU Jinsong, ZHAO Guohua. Adaptive dynamic scheduling of garment hanging production line[J]. Journal of Textile Research, 2020, 41(10):144-149.
[6] SALMASI N, LOGENDRAN R, SKANDARI M R. Total flow time minimization in a flow shop sequence-dependent group scheduling problem[J]. Computer & Operations Research, 2010, 37(1):199-212.
doi: 10.1016/j.cor.2009.04.013
[7] 黄基诞, 郑斐峰, 徐寅峰, 等. 基于MapReduce模型带任务分割的平行机调度优化[J]. 控制与决策, 2019, 34(7):1514-1520.
HUANG Jidan, ZHENG Feifeng, XU Yinfeng, et al. Parallel machine scheduling optimization with task partition based on MapReduce model[J]. Control and Decision, 2019, 34(7):1514-1520.
[8] SHAH N K, IERAPETRITOU M G. Integrated production planning and scheduling optimization of multi-site, multi-product process industry[J]. Computers & Chemical Engineering, 2012, 37:214-226.
doi: 10.1016/j.compchemeng.2011.08.007
[9] 赵东方, 张晓冬, 周宏丽. 面向并行制造的多生产单元协同调度研究[J]. 中国管理科学, 2020, 28(8):188-195.
ZHAO Dongfang, ZHANG Xiaodong, ZHOU Hongli. Multi-manufacturing cells collaborative scheduling based on parallel manufacturing[J]. Chinese Journal of Management Science, 2020, 28(8):188-195.
[10] 于晓义, 孙树栋, 褚崴. 基于并行协同进化遗传算法的多协作车间计划调度[J]. 计算机集成制造系统, 2008, 14(5):991-1000.
YU Xiaoyi, SUN Shudong, CHU Wei. Parallel collaborative evolutionary genetic algorithm for multi-workshop planning and scheduling problems[J]. Computer Integrated Manufacturing Systems, 2008, 14(5):991-1000.
[1] 谢子昂 杜劲松 陈清婷 余雅芸 荀培莉. 西服定制单元化生产的筛选秩序优化[J]. , 2021, 42(10): 0-0.
[2] 许雪梅. 基于模拟退火算法改进遗传算法的织物智能配色[J]. 纺织学报, 2021, 42(07): 123-128.
[3] 周亚勤, 王攀, 张朋, 张洁. 纬编织造车间生产调度方法研究[J]. 纺织学报, 2021, 42(04): 170-176.
[4] 张卓, 丛洪莲, 蒋高明, 董智佳. 基于交互式遗传算法的Polo衫快速款式推荐系统[J]. 纺织学报, 2021, 42(01): 138-144.
[5] 李亮, 倪俊芳. 绗缝机花样加工代码自动生成算法[J]. 纺织学报, 2020, 41(11): 162-167.
[6] 谢子昂, 杜劲松, 赵国华. 衬衫吊挂流水线的自适应动态调度[J]. 纺织学报, 2020, 41(10): 144-149.
[7] 张晓侠, 刘凤坤, 买巍, 马崇启. 基于BP神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(08): 121-127.
[8] 黄珍珍, 莫碧贤, 温李红. 基于遗传算法及仿真技术的服装生产流水线平衡[J]. 纺织学报, 2020, 41(07): 154-159.
[9] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[10] 莫帅, 冯战勇, 唐文杰, 党合玉, 邹振兴. 基于神经网络和遗传算法的锭子弹性管性能优化[J]. 纺织学报, 2020, 41(04): 161-166.
[11] 黄淇, 周其洪, 张倩, 王绍宗, 范伟, 孙会丰. 基于系统布置设计-遗传算法的纱线浸染生产线布局优化[J]. 纺织学报, 2020, 41(03): 84-90.
[12] 张旭靖, 王立川, 陈雁. 基于遗传算法的服装缝制生产线平衡优化[J]. 纺织学报, 2020, 41(02): 125-129.
[13] 王晓晖, 刘月刚, 孟婥, 孙以泽. 基于遗传算法和神经网络的3D增材印花工艺参数优化[J]. 纺织学报, 2019, 40(11): 168-174.
[14] 孟朔, 潘如如, 高卫东, 王静安, 周利军. 采用主目标进化遗传算法的织造排程研究[J]. 纺织学报, 2019, 40(08): 169-174.
[15] 宋楚平 李少芹. 应用改进遗传算法的自动配棉模型优化与应用[J]. 纺织学报, 2016, 37(09): 151-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!