纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 203-209.doi: 10.13475/j.fzxb.20201105507

• 综合述评 • 上一篇    下一篇

数字化服装结构设计技术的研究进展

雷鸽1, 李小辉1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2020-11-27 修回日期:2021-09-24 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 李小辉
  • 作者简介:雷鸽(1997—),女,硕士生。主要研究方向为数字化服装结构设计。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232022G-08)

Review of digital pattern-making technology in garment production

LEI Ge1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-11-27 Revised:2021-09-24 Published:2022-04-15 Online:2022-04-20
  • Contact: LI Xiaohui

摘要:

为促进数字化结构设计技术在服装制造业中的应用与发展,首先介绍了参数化制版与基于人工智能的二维纸样直接生成方法,以及三维虚拟缝合技术的发展现状;然后系统地概述了包括三维服装自动生成、虚拟立体裁剪、三维基型重建、三维服装模块化重组的虚拟服装模型的设计方法,总结了基于曲面展开的二维纸样获取技术,包括几何展开法、力学展开法以及几何力学相结合的方法。认为数字化服装结构设计技术在简化制版、摆脱经验依赖、实现可视化三维造型与二维平面转化等方面具有巨大潜力;结合人类创新潜能与计算机计算能力,在满足服装个性化与多元化的同时,提高制版准确率、建模精度与效率是未来数字化结构设计的发展方向。

关键词: 服装结构设计, 数字化结构设计, 样板生成, 三维虚拟, 缝合技术, 曲面展开, 参数化制版, 人工智能

Abstract:

To promote the application and development of digital pattern-making technology, this paper starts by introducing the two-dimensional pattern generation technology including parametric design and application of artificial, and three-dimensional virtual suture technology. The methods to generate garment models, including three-dimensional auto-generation, three-dimensional visual draping, three-dimensional reconstruction, and three-dimensional modular reorganization were discussed. Surface development techniques such as geometric development, mechanical development, the combination of geometry and mechanics were summarized. The paper illustrates that the digital garment pattern-making technology has great potential in pattern-making simplification, experience-independence, and the transformation between visual three-dimensional modeling and two-dimensional pattern. The potential development direction of digital pattern-making is to improve pattern accuracy, modeling accuracy and efficiency while satisfying the personalization and diversification of clothing by combining human innovation potential and computer computing power.

Key words: garment pattern-making, digital pattern-marking, pattern generation, three-dimensional virtual, suture technology, surface development, parametric design, artifical intelligence

中图分类号: 

  • TS941.2
[1] HU Z H, DING Y S, ZHANG W B, et al. An interactive co-evolutionary CAD system for garment pattern design[J]. Computer-Aided Design, 2008, 40(12): 1094-1104.
doi: 10.1016/j.cad.2008.10.010
[2] 宁冠华. 基于女性体型特征的女衫样板参数化关系模型研究[D]. 西安: 西安工程大学, 2013:9-10.
NING Guanhua. Research on bouse pattern's parametric relation model based on the female physical characteristic[D]. Xi'an: Xi'an Polytechnic University, 2013:9-10.
[3] 刘珊珊. 参数化服装制板的人体测量尺寸的约束关系[D]. 北京: 北京服装学院, 2012:6-8.
LIU Shanshan. The constraint relationship of body measurement of parametric apparel pattern-making technology[D]. Beijing: Beijing Institute of Fashion Technology, 2012:6-8.
[4] XIU Y, WAN Z K, CAO W. A constructive approach toward a parametric pattern-making model[J]. Textile Research Journal, 2011, 81(10): 979-991.
doi: 10.1177/0040517510388552
[5] 叶勤文, 王维杰, 陈咪, 等. 基于AutoCAD以及圆弧拟合曲线的参数化服装制版[J]. 毛纺科技, 2019, 47(9): 57-65.
YE Qinwen, WANG Weijie, CHEN Mi, et al. Parametric apparel pattern-making based on AutoCAD and curve fitting with arc[J]. Wool Textile Journal, 2019, 47(9): 57-65.
[6] 娄少红. 基于AutoCAD参数化功能的A型裙样板自动化生成[J]. 纺织学报, 2020, 41(1): 131-138.
LOU Shaohong. Automatic generation of A-type skirt model based on AutoCAD parametric function[J]. Journal of Textile Research, 2020, 41(1): 131-138.
[7] 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019, 40(1): 130-135.
ZHANG Lingli, ZHANG Gaopeng. Parametric flat pattern design for clothing based on MatLab[J]. Journal of Textile Research, 2019, 40(1): 130-135.
[8] LIU K, ZHU C, TAO X, et al. Parametric design of garment pattern based on body dimensions[J]. International Journal of Industrial Ergonomics, 2019, 72: 212-221.
doi: 10.1016/j.ergon.2019.05.012
[9] KALKANCI M, KURUMER G, ÖZTÜRK H, et al. Artificial neural network system for prediction of dimensional properties of cloth in garment manufacturing: case study on a T-shirt[J]. Fibres & Textiles in Eastern Europe, 2017, 25(4):135-140.
[10] NAYAK R, PADHYE R. Automation in garment manufacturing[M]. Cambrideg: Woodhead Publishing, 2018: 109-138.
[11] XING Y. An innovative approach for auto-generating the sleeve pattern sizes by artificial neural network model using MatLab[C]// WANG Z, LI T. Textile Bioengineering and Informatics Symposium in Conjunction with Asian Protective Clothing Conference. New York: Curran Associated Inc, 2014:667-674.
[12] WANG Z, XING Y, WANG J, et al. A knowledge-supported approach for garment pattern design using fuzzy logic and artificial neural networks[J]. Multimedia Tools and Applications, 2020. DOI: 10.1007/s11042-020-10090-6.
doi: 10.1007/s11042-020-10090-6
[13] LIU K, WANG J, KAMALHA E, et al. Construction of a prediction model for body dimensions used in garment pattern making based on anthropometric data learning[J]. Journal of The Textile Institute, 2017, 108(12): 2107-2114.
doi: 10.1080/00405000.2017.1315794
[14] WANG Z, WANG J, XING Y, et al. Estimating human body dimensions using RBF artificial neural networks technology and its application in activewear pattern making[J]. Applied Sciences, 2019, 9(6): 1140.
doi: 10.3390/app9061140
[15] PUNDIR N. Fashion technology: today and tomorrow[M]. Pitampura: Mittal Publications, 2007:138-223.
[16] SAYEM A S M, KENNON R, CLARKE N. 3D CAD systems for the clothing industry[J]. International Journal of Fashion Design, Technology and Education, 2010, 3(2): 45-53.
doi: 10.1080/17543261003689888
[17] DECAUDIN P. Virtual garments: a fully geometric approach for clothing design[C]// JULIUS D, WITHER J. Computer Graphics Forum. Hoboken: The Eurographics Association and John Wiley & Sons Ltd, 2006:625-634.
[18] ROBSON C, MAHARIK R, SHEFFER A, et al. Context-aware garment modeling from sketches[J]. Computers & Graphics, 2011, 35(3): 604-613.
doi: 10.1016/j.cag.2011.03.002
[19] GILLETTE R. Real-time dynamic wrinkling of coarse animated cloth[C]// PETERS C, VINING N. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: Association for Computing Machinery, 2015:17-26.
[20] SHIMADA T, TADA Y. Approximate transformation of an arbitrary curved surface into a plane using dynamic programming[J]. Computer-Aided Design, 1991, 23(2): 153-159.
doi: 10.1016/0010-4485(91)90006-I
[21] BENDER J. Position-based simulation methods in computer graphics[C]// MÜLLER M, MACKLIN M. Eurographics (Tutorials). Goslar: The Eurographics Association, 2015:8.
[22] PATEL C. Tailornet: predicting clothing in 3D as a function of human pose, shape and garment style[C]// LIAO Z, PONS-MOLL G. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020:7365-7375.
[23] TESCHNER M. Optimized spatial hashing for collision detection of deformable objects[C]// HEIDELBERGER B, MÜLLER M. International Symposium on Vision, Modeling, and Visualization. Munich: Aka GmbH, 2003:47-54.
[24] ZACHMANN G. Minimal hierarchical collision detection[C]// Proceedings of the ACM Symposium on Virtual Reality Software and Technology. New York: Association for Computing Machinery, 2002:121-128.
[25] HORIBA Y, AMANO T, INUI S, et al. Proposal of method for estimating clothing pressure of tight-fitting garment made from highly elastic materials: hybrid method using apparel CAD and finite element analysis software[J]. Journal of Fiber Science and Technology, 2021, 77(2): 76-87.
doi: 10.2115/fiberst.2021-0006
[26] BRUBACHER K, TYLER D, APEAGYEI P, et al. Evaluation of the accuracy and practicability of predicting compression garment pressure using virtual fit technology[J]. Clothing and Textiles Research Journal, 2021.DOI: 10.1177/0887302X21999314.
doi: 10.1177/0887302X21999314
[27] WANG C C L, WANG Y, YUEN M M F. Feature based 3D garment design through 2D sketches[J]. Computer-Aided Design, 2003, 35(7): 659-672.
doi: 10.1016/S0010-4485(02)00091-X
[28] THOMASSEY S, BRUNIAUX P. A template of ease allowance for garments based on a 3D reverse methodology[J]. International Journal of Industrial Ergonomics, 2013, 43(5): 406-416.
doi: 10.1016/j.ergon.2013.08.002
[29] HONG Y, ZENG X, BRUNIAUX P, et al. Interactive virtual try-on based three-dimensional garment block design for disabled people of scoliosis type[J]. Textile Research Journal, 2016, 87(10): 1261-1274.
doi: 10.1177/0040517516651105
[30] HONG Y, ZENG X, BRUNIAUX P, et al. Collaborative 3D-to-2D tight-fitting garment pattern design process for scoliotic people[J]. Fibres & Textiles in Eastern Europe, 2017, 25(5): 113-118.
[31] HUANG H, MOK P, KWOK Y, et al. Automatic block pattern generation from a 3D unstructured point cloud[J]. Research Journal of Textile & Apparel, 2010, 14(1):26-37.
[32] WANG J, LU G, LI W, et al. Interactive 3D garment design with constrained contour curves and style curves[J]. Computer-Aided Design, 2009, 41(9): 614-625.
doi: 10.1016/j.cad.2009.04.009
[33] TURQUIN E, WITHER J, BOISSIEUX L, et al. A sketch-based interface for clothing virtual characters[J]. IEEE Computer Graphics and Applications, 2007, 27(1): 72-81.
doi: 10.1109/MCG.2007.1
[34] LIU K, ZENG X, BRUNIAUX P, et al. 3D interactive garment pattern-making technology[J]. Computer-Aided Design, 2018, 104: 113-124.
doi: 10.1016/j.cad.2018.07.003
[35] SUL I H, KANG T J. Interactive garment pattern design using virtual scissoring method[J]. International Journal of Clothing Science and Technology, 2006, 18(1/2): 31-42.
doi: 10.1108/09556220610637495
[36] MESUDA Y, INUI S, HORIBA Y. Virtual draping by mapping[J]. Computers in Industry, 2018, 95: 93-101.
doi: 10.1016/j.compind.2017.11.004
[37] MENG Y, MOK P Y, JIN X. Computer aided clothing pattern design with 3D editing and pattern alteration[J]. Computer-Aided Design, 2012, 44(8): 721-734.
doi: 10.1016/j.cad.2012.03.006
[38] WANG C C, WANG Y, YUEN M M. Design automation for customized apparel products[J]. Computer-Aided Design, 2005, 37(7): 675-691.
doi: 10.1016/j.cad.2004.08.007
[39] CORDIER F, SEO H, MAGNENAT-THALMANN N. Made-to-measure technologies for an online clothing store[J]. IEEE Computer Graphics and Applications, 2003, 23(1): 38-48.
[40] ZHU Y, PENG Y, BOODAGHIAN A S L A. Dual adaptive adjustment for customized garment pattern[J]. Scientific Programming, 2019, 2019: 1-12.
[41] BROUET R, SHEFFER A, BOISSIEUX L, et al. Design preserving garment transfer[J]. ACM Transactions on Graphics, 2012, 31(4):1-11.
[42] LI J, LU G. Modeling 3D garments by examples[J]. Computer-Aided Design, 2014, 49: 28-41.
doi: 10.1016/j.cad.2013.12.005
[43] KWOK T H, ZHANG Y Q, WANG C C, et al. Styling evolution for tight-fitting garments[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22(5): 1580-1591.
doi: 10.1109/TVCG.2015.2446472
[44] BARTLE A, SHEFFER A, KIM V G, et al. Physics-driven pattern adjustment for direct 3D garment editing[J]. ACM Transactions on Graphics, 2016, 35(4): 1-11.
[45] 席平. 三维曲面的几何展开[J]. 计算机学报, 1997(4): 315-322.
XI Ping. Geometric approach of 3D surface develop-ment[J]. Chinese Journal of Computers, 1997(4): 315-322.
[46] PARIDA L, MUDUR S P. Constraint-satisfying planar development of complex surfaces[J]. Computer-Aided Design, 1993, 25(4): 225-232.
doi: 10.1016/0010-4485(93)90053-Q
[47] XIU Y. A survey on pattern-making technologies in garment CAD[C]// WAN Z K. IEEE Conference Anthology. Chongqing: IEEE, 2013:1-6.
[48] 樊劲, 周济, 王启付, 等. 基于弹簧质点模型的二维/三维映射算法[J]. 软件学报, 1999(2): 3-5.
FAN Jin, ZHOU Ji, WANG Qifu, et al. 2D/3D isometric transformation using spring-mass system[J]. Journal of Software, 1999(2): 3-5.
[49] WANG C C, SMITH S S, YUEN M M. Surface flattening based on energy model[J]. Computer-Aided Design, 2002, 34(11): 823-833.
doi: 10.1016/S0010-4485(01)00150-6
[50] 庄梅玲. 三维衣身原型曲面展平技术的研究[D]. 上海: 东华大学, 2010:51-86.
ZHUANG Meiling. Research on flatting technology for 3-D basic body surface[D]. Shanghai: Donghua University, 2010:51-86.
[51] AONO M, BREEN D E, WOZNY M J. Fitting a woven-cloth model to a curved surface: mapping algorithms[J]. Computer-Aided Design, 1994, 26(4): 278-292.
doi: 10.1016/0010-4485(94)90074-4
[52] 杨继新, 刘健, 肖正扬, 等. 复杂曲面的可展化及其展开方法[J]. 机械科学与技术, 2001, 20(4): 520-521.
YANG Jixin, LIU Jian, XIAO Zhengyang, et al. A new method for making complex surface developable and its development[J]. Mechanical Science and Technology, 2001, 20(4): 520-521.
[53] AU C K, MA Y S. Garment pattern definition, development and application with associative feature approach[J]. Computers in Industry, 2010, 61(6): 524-531.
doi: 10.1016/j.compind.2010.03.002
[1] 邹亚男, 夏风林, 董智佳, 黄梦婷, 储开元. 经编全成形脖套的结构设计与工艺实现[J]. 纺织学报, 2021, 42(12): 76-80.
[2] 黎博文, 王萍, 刘玉叶. 基于人体动态特征的三维服装虚拟试穿技术[J]. 纺织学报, 2021, 42(09): 144-149.
[3] 冀艳波, 王玲丽, 刘凯旋. 基于数字化三维人体模型的旗袍定制设计[J]. 纺织学报, 2021, 42(01): 133-137.
[4] 王显峰, 高天成, 肖军. 复合材料缝合技术的研究进展[J]. 纺织学报, 2019, 40(12): 169-177.
[5] 董九志, 宋宗建, 陈云军, 蒋秀明. 预制体缝合针稳定性分析及插刺机构改进设计[J]. 纺织学报, 2019, 40(10): 171-176.
[6] 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019, 40(01): 130-135.
[7] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[8] 辛芳芳. 基于最小方差支持向量机的织物热湿舒适性预测[J]. 纺织学报, 2011, 32(7): 60-64.
[9] 李端;钟跃崎;. 基于骨架重合的真实人体模型动态仿真[J]. 纺织学报, 2010, 31(11): 140-144.
[10] 张向辉;王云仪;李俊;张文斌. 防护服装结构设计对着装舒适性的影响[J]. 纺织学报, 2009, 30(06): 138-144.
[11] 邹平. 逐步回归中服装结构设计数学模型部位间的影响关系[J]. 纺织学报, 2007, 28(2): 95-99.
[12] 戴建国;陈敏之;何瑛. 立体裁剪及其适用性分析[J]. 纺织学报, 2006, 27(3): 117-120.
[13] 胡觉亮;董建明;何瑛;邹奉元. 基于人工神经网络的服装结构设计[J]. 纺织学报, 2006, 27(2): 49-52.
[14] 吕志军;项前;殷祥刚;杨建国. 知识表达及其在毛纺织工艺设计中的应用[J]. 纺织学报, 2005, 26(6): 115-117.
[15] 甘应进;陈东生;蒋丽君. 服装结构设计多媒体教学系统的研发[J]. 纺织学报, 2005, 26(1): 138-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!