纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 151-158.doi: 10.13475/j.fzxb.20201201908
钱淼1,2, 胡恒蝶1, 向忠1(), 马成章1, 胡旭东1
QIAN Miao1,2, HU Hengdie1, XIANG Zhong1(), MA Chengzhang1, HU Xudong1
摘要:
为降低热管换热器的流动阻力并增强其换热效率,提出一种水滴形非均布热管换热器结构。使用计算流体力学软件ANSYS Fluent对传统错排热管阵列、水滴形热管阵列及非均布水滴形热管阵列的换热性能展开数值模拟,得到了其在不同雷诺数下的努塞尔数、阻力系数以及综合换热性能指标的变化曲线。对比分析结果表明:相对于传统错排热管阵列,水滴形热管阵列有效传热面积较大,内部流体流动无涡出现,流动摩擦较小,具有更大的努塞尔数以及更小的阻力系数,综合换热性能指标更佳;通过非均布设计,水滴形热管阵列内的流动紊流度增加,努塞尔数变大,换热性能增加。
中图分类号:
[1] |
OGULATA R T. Utilization of waste-heat recovery in textile drying[J]. Applied Energy, 2004, 79(1):41-49.
doi: 10.1016/j.apenergy.2003.12.002 |
[2] |
JOUHARA H, OLABI A G. Editorial: industrial waste heat recovery[J]. Energy, 2018, 160:1-2.
doi: 10.1016/j.energy.2018.07.013 |
[3] | 王巧丽. 余热回收翅片管换热器传热与流体力学特性研究[D]. 广州: 华南理工大学, 2012: 11-12. |
WANG Qiaoli. Study on heat transfer and fluid dynamics performances of the finned tube heat exchanger for waste heat recovery[D]. Guangzhou: South China University of Technology, 2012: 11-12. | |
[4] | 高兴辉, 周帼彦, 涂善东. 缠绕管式换热器壳程强化传热性能影响因素分析[J]. 化工学报, 2019, 70(7):2456-2471. |
GAO Xinghui, ZHOU Guoyan, TU Shandong. Study on effects of structural parameters on shell-side heat transfer enhancement in spiral wound heat exchangers[J]. CIESC Journal, 2019, 70(7):2456-2471. | |
[5] |
BARI S, HOSSAIN S N. Waste heat recovery from a diesel engine using shell and tube heat exchanger[J]. Applied Thermal Engineering, 2013, 61(2):355-363.
doi: 10.1016/j.applthermaleng.2013.08.020 |
[6] |
KALLANNAVAR S, MASHYAL S, RAIANGALE M. Effect of tube layout on the performance of shell and tube heat exchangers[J]. Materials Today: Proceedings, 2020, 27(1):263-267.
doi: 10.1016/j.matpr.2019.10.151 |
[7] |
SARRA K, LAUNAY S, TADRIST L. Analysis of enhanced vapor desuperheating during condensation inside a plate heat exchanger[J]. International Journal of Thermal Sciences, 2016, 105:96-108.
doi: 10.1016/j.ijthermalsci.2016.03.001 |
[8] |
KUMAR V, TIWARI A K, GHOSH S K. Effect of variable spacing on performance of plate heat exchanger using nanofluids[J]. Energy, 2016, 114:1107-1119.
doi: 10.1016/j.energy.2016.08.091 |
[9] | ROBERTO C, GIUSEPPE B, DAVIDE D B, et al. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions[J]. Journal of Physics: Conference Series, 2015, 655(1):12-38. |
[10] |
WANG Y X, HAN X X, LIANG Q Q, et al. Experimental investigation of the thermal performance of a novel concentric condenser heat pipe array[J]. International Journal of Heat and Mass Transfer, 2015, 82:170-178.
doi: 10.1016/j.ijheatmasstransfer.2014.11.045 |
[11] |
LIU D, TANG G F, ZHAO F Y, et al. Modeling and experimental investigation of looped separate heat pipe as waste heat recovery facility[J]. Applied Thermal Engineering, 2006, 26(17/18):2433-2441.
doi: 10.1016/j.applthermaleng.2006.02.012 |
[12] |
SRIMUANG W, AMATACHAVA P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6):4303-4315.
doi: 10.1016/j.rser.2012.03.030 |
[13] |
FAGHRI A, BUCHKO M. Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources[J]. Journal of Heat Transfer, 1991, 113(3):728-734.
doi: 10.1115/1.2910624 |
[14] |
ALIZADEHDAKHEL A, RAHIMI M, ALSAIRAFI A A. CFD modeling of flow and heat transfer in a thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(3):312-318.
doi: 10.1016/j.icheatmasstransfer.2009.09.002 |
[15] |
KANG S W, WEI W C, TSAI S H, et al. Experimental investigation of silver nano-fluid on heat pipe thermal performance[J]. Applied Thermal Engineering, 2006, 26(17):2377-2382.
doi: 10.1016/j.applthermaleng.2006.02.020 |
[16] |
KHAN W A, CULHAM J R, YOVANOVICH M M. Convection heat transfer from tube banks in crossflow: analytical approach[J]. International Journal of Heat and Mass Transfer, 2006, 49(25/26):4831-4838.
doi: 10.1016/j.ijheatmasstransfer.2006.05.042 |
[17] | RAZZAGHI H, LAVEGHI M, GOODARZI S, et al. Numerical analysis of the effects of changeable transverse and longitudinal pitches and porous media inserts on heat transfer from an elliptic tube bundle[J]. Journal of Theoretical & Applied Mechanics, 2014, 52(3):767-780. |
[18] |
LEE D, AHN J, SHIN S. Uneven longitudinal pitch effect on tube bank heat transfer in cross flow[J]. Applied Thermal Engineering, 2013, 51(1):937-947.
doi: 10.1016/j.applthermaleng.2012.10.031 |
[19] | 赵兰萍, 杨志刚. 管间距对矩形翅片椭圆管换热管束性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(1):150-154. |
ZHAO Lanping, YANG Zhigang. Effect of tube pitches on performance rectangular finned elliptical tube bundles[J]. Journal of Tongji University(Natural Science), 2016, 44(1):150-154. | |
[20] | 赵兰萍, 杨志刚. 管束排列方式对矩形翅片椭圆管束性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(2):298-302. |
ZHAO Lanping, YANG Zhigang. Effect of tube arrangement on performance of rectangular finned elliptical tube bundles[J]. Journal of Tongji Univer-sity (Natural Science), 2016, 44(2):298-302. | |
[21] | 赵兰萍, 宋亚军, 杨志刚. 矩形翅片椭圆换热管束性能[J]. 同济大学学报(自然科学版), 2016, 44(7):1096-1100. |
ZHAO Lanping, SONG Yajun, YANG Zhigang. Performance of rectangular finned elliptical tube heat exchanger[J]. Journal of Tongji University (Natural Science), 2016, 44(7):1096-1100. | |
[22] |
REFAEY H A, SULTAN A M, MOAWAD M, et al. Numerical investigations of the convective heat transfer from turbulent flow over staggered tube bank[J]. Journal of The Institution of Engineers (India): Series C, 2019, 100(6):983-993.
doi: 10.1007/s40032-018-0493-z |
[23] | 吴轩, 赵伶玲, 高腾. 水滴形管换热与阻力特性的数值研究[J]. 热能动力工程, 2018, 33(12):30-35. |
WU Xuan, ZHAO Lingling, GAO Teng. Numerical simulation on the heat exchange and flow resistance of water drop-shaped tube[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(12):30-35. | |
[24] | 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 261. |
YANG Shiming, TAO Wenquan. Heat transfer theory[M]. 4th ed. Beijing: Higher Education Press, 2006: 261. | |
[25] | 余建祖. 换热器原理与设计[M]. 北京: 北京航空航天大学出版社, 2005: 56. |
YU Jianzu. Principle and design of heat exchanger[M]. Beijing: Beihang University Press, 2005: 56. | |
[26] | 董艺玮. 圆柱扰流的流动稳定性和传热特性分析[D]. 天津:天津大学, 2017: 22-25. |
DONG Yiwei. Flow stability and heat transfer characteristics of flow past a cylinder[D]. Tianjin: Tianjin University, 2017: 22-25. |
[1] | 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172. |
[2] | 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63. |
[3] | 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100. |
[4] | 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184. |
[5] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[6] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用[J]. 纺织学报, 2020, 41(01): 139-144. |
[7] | 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167. |
[8] | 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168. |
[9] | 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43. |
[10] | 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63. |
[11] | 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135. |
[12] | 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139. |
[13] | 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50. |
[14] | 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167. |
[15] | 柯惠珍, 李永贵. 癸酸-棕榈酸-硬脂酸/聚丙烯腈/氮化硼复合相变纤维膜的传热性能[J]. 纺织学报, 2019, 40(03): 26-31. |
|