纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 163-169.doi: 10.13475/j.fzxb.20201202807

• 机械与器材 • 上一篇    下一篇

基于模型预测的经编送经动态张力补偿系统设计

郑宝平, 蒋高明(), 夏风林, 张爱军   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2020-12-10 修回日期:2021-06-08 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 蒋高明
  • 作者简介:郑宝平(1986—),男,博士生。主要研究方向为针织装备智能化控制技术。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(JUSRP52013B);国家自然科学基金项目(61772238);泰山产业领军人才项目(tscy20180224)

Design of dynamic tension compensation system for warp knitting let-off based on model predictions

ZHENG Baoping, JIANG Gaoming(), XIA Fenglin, ZHANG Aijun   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-12-10 Revised:2021-06-08 Published:2021-09-15 Online:2021-09-27
  • Contact: JIANG Gaoming

摘要:

经编机编织过程中首先要实现控制经纱在1个横列内不同角度区域张力值的变化,才能达成纱线的动态张力补偿控制。为解决当前系统控制经轴送经量出现的纱线张力波动大,且无法精确到控制1个横列内不同角度纱线张力等缺陷,设计了一种基于模型预测的经编送经动态张力补偿系统。通过结合经编机成圈机构运动规律进行分析,设计出系统的硬件和软件平台,优化张力传感器选型,设计了电子凸轮规划曲线算法和模型预测控制算法,实现了纱线动态张力补偿控制。通过理论分析和实验测试,从反馈的纱线动态张力值曲线分析验证了该模型预测控制算法能够使纱线张力峰值降低至少56%以上。

关键词: 经编机, 动态张力补偿, 张力传感器, 电子凸轮, 控制算法

Abstract:

In order to control the yarn dynamic tension compensation, warp knitting machines are required to control the variation of tension values in different angles in a cycle of knitting process. In view of the defects associated with controlling the let-off of warp beam, such as excessive yarn tension fluctuation and difficulty in accurate control of yarn tension with different angles in a row, a warp knitting let-off dynamic tension compensation system based on model prediction has been developed. To faclitate the yarn dynamic tension compensation control, a hardware and software platform of the system was designed, tension sensors were selected and optimized, algorithm for determining the electronic cam programming profile and the control algorithm for model prediction were created, on the basis of analyzing the movement law of the winding mechanism of the warp knitting machine. Through theoretical analysis and experimental validation, the control algorithm of model prediction is found to reduce the yarn tension peak value by at least 56% by analyzing the feedback yarn dynamic tension curve.

Key words: warp knitting machine, dynamic tension compensation, tension sensor, electronic cam, control algorithm

中图分类号: 

  • TS183.92

图1

主轴1个编织周期内纱线张力波动曲线"

图2

纱线动态张力补偿系统控制原理"

图3

动态张力补偿系统纱线路径图"

图4

送经动态张力补偿控制系统上位人机交互界面"

表1

张力传感器标定及精度指标"

砝码质量/g 输出电压/V 输出电压变化率/(V·g-1)
0 1.68
10 2.14 0.046 0
20 2.60 0.046 0
40 3.51 0.045 7
50 3.96 0.045 6
60 4.43 0.045 8
90 5.80 0.045 8
100 6.26 0.045 8

图5

五次多项式角位移、角速度、角加速度规划曲线"

表2

测试平台硬件名称及功能"

硬件名称 数量 功能
HKS4 EL经编机 1台 主机结构
上位机控制系统 1套 人机交互、控制
固高运动控制卡 1套 运动控制器
多摩川伺服系统 1套 控制及执行机构
张力传感器 1套 纱线张力值测试
LMS振动测试仪 1台 采集纱线张力值曲线

表3

不同转速无动态补偿和有动态补偿纱线张力峰值对比"

主轴转速/
(r·min-1)
无张力补偿
峰值/N
有张力补偿
峰值/N
峰值降低
率/%
1 100 0.176 0.075 57.4
1 300 0.180 0.070 61.1
1 500 0.198 0.087 56.1

图6

不同主轴转速下纱线张力值曲线"

[1] 徐云龙, 夏风林. 双针床经编机梳栉摆动对瞬时需纱量和纱线张力的影响[J]. 纺织学报, 2019, 40(6):107-111.
XU Yunlong, XIA Fenglin. Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine[J]. Journal of Textile Research, 2019, 40(6):107-111.
[2] KIM H K, DU H C, KIM J H. A study on correlation between warp tension and weaving condition[J]. Fibers and Polymers, 2013, 14(12):2185-2190.
doi: 10.1007/s12221-013-2185-x
[3] 张灵婕, 缪旭红, 蒋高明, 等. 经编张力补偿装置对经纱张力的影响[J]. 纺织学报, 2016, 37(11):126-129.
ZHANG Lingjie, MIAO Xuhong, JIANG Gaoming, et al. Influence of warp knitting tension compensation device on warp tension[J]. Journal of Textile Research, 2016, 37(11):126-129.
[4] 孙帅, 缪旭红, 张灵婕, 等. 经编纱线张力补偿装置的工作机制[J]. 纺织学报, 2018, 39(11):140-144.
SUN Shuai, MIAO Xuhong, ZHANG Lingjie, et al. Working mechanism of warp knitting yarn tension compensator[J]. Journal of Textile Research, 2018, 39(11):140-144.
doi: 10.1177/004051756903900203
[5] 孙帅, 缪旭红, 张琦, 等. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(3):51-55.
SUN Shuai, MIAO Xuhong, ZHANG Qi, et al. Yarn tension fluctuation on high-speed warp knitting machine[J]. Journal of Textile Research, 2020, 41(3):51-55.
[6] METZKES K, SCHMIDT R, MARTIN J, et al. Simulation of the yarn transportation dynamics in a warp knitting machine[J]. Textile Research Journal, 2013, 83(12):1251-1262.
doi: 10.1177/0040517512470197
[7] LIU X, MIAO X H. Analysis of yarn tension based on yarn demand variation on a tricot knitting machine[J]. Textile Research Journal, 2016, 87(4):487-497.
doi: 10.1177/0040517516632473
[8] 胡瑜, 刘行, 缪旭红. 经编纱线动态张力评价指标[J]. 纺织学报, 2018, 39(2):68-72.
HU Yu, LIU Xing, MIAO Xuhong. Evaluation on dynamic tension of warp knitted yarn[J]. Journal of Textile Research, 2018, 39(2):68-72.
[9] ZHANG Jisheng, JIANG Gaoming, CONG Honglian, et al. Predictive algorithm for run-in value of warp knitting based on weave matrix[J]. Indian Journal of Fibre & Textile Research, 2018, 43:237-241.
[10] TEMIZ I, DOGAN Z. Experimental analysis of different control methods for the speed control of alternative-current servo motors[J]. International Review of Electrical Engineering-IREE, 2011, 6(1):215-222.
[11] 吴震宇, 陈琳荣, 李子军, 等. 接触式纱线张力传感器动态测量模型[J]. 纺织学报, 2013, 34(8):138-142.
WU Zhenyu, CHEN Linrong, LI Zijun, et al. Dynamic measurement model of contact tension sensor for yarn[J]. Journal of Textile Research, 2013, 34(8):138-142.
[12] PERUMAAL S, JAWAHAR N. Automated trajectory planner of industrial robot for pick-and-place task[J]. International Journal of Advanced Robotic Systems, 2013, 10(100):1-17.
doi: 10.5772/52938
[13] TAN Jieqing, XING Yan, FAN Wen, et al. Smooth orientation interpolation using parametric quintic-polynomial-based quaternion spline curve[J]. Journal of Computational & Applied Mathematics, 2018, 329:256-267.
[14] 张灵婕, 缪旭红. 纱线断裂功对经编织造性能的影响[J]. 纺织学报, 2018, 39(12):47-52.
ZHANG Lingjie, MIAO Xuhong. Influence of yarn rupture work on performance of warp knitting[J]. Journal of Textile Research, 2018, 39(12):47-52.
[1] 郭威东, 夏风林, 张琦. 经编机电子横移系统高速响应性的影响因素[J]. 纺织学报, 2021, 42(01): 162-166.
[2] 沈瑞超, 郗欣甫, 孙以泽. 三维增材鞋面印花机对位平台的冗余驱动控制策略[J]. 纺织学报, 2020, 41(10): 164-169.
[3] 孙帅, 缪旭红, 张琦, 王瑾. 高速经编机上纱线张力的波动规律[J]. 纺织学报, 2020, 41(03): 51-55.
[4] 汪健东, 夏风林, 李亚林, 赵钰宁. 经编机梳栉电子横移伺服的最优滑模控制[J]. 纺织学报, 2020, 41(02): 143-148.
[5] 徐云龙, 夏风林. 双针床经编机间隔距离对纱线需求量的影响分析[J]. 纺织学报, 2019, 40(08): 151-156.
[6] 张琦, 魏莉, 罗成, 夏风林, 蒋高明. 基于双总线架构的经编机双贾卡提花控制系统[J]. 纺织学报, 2019, 40(07): 145-150.
[7] 徐云龙, 夏风林. 双针床经编机梳栉摆动对瞬时需纱量和纱线张力的影响[J]. 纺织学报, 2019, 40(06): 106-110.
[8] 苏柳元 孟婥 张玉井 赵义满. 经编机梳栉横移系统误差建模与仿真[J]. 纺织学报, 2018, 39(08): 130-137.
[9] 郑静 夏风林 刘浪. 基于Simulink的经编机电子横移系统仿真[J]. 纺织学报, 2018, 39(02): 150-156.
[10] 牛善宇 曹清林. 采用电子凸轮的多梳栉经编机成圈运动[J]. 纺织学报, 2017, 38(04): 127-133.
[11] 赖森财 任雯 刘永桂. 嵌入式电子贾卡控制系统设计[J]. 纺织学报, 2016, 37(10): 135-140.
[12] 曹清林 赵红霞 曹娟娟 张大伟 樊腾飞. 浮纹贾卡经编机纱线选取机构的设计[J]. 纺织学报, 2016, 37(10): 130-134.
[13] 吴震宇 陈琳荣 李子军 叶进余 胡科桥. 接触式纱线张力传感器动态测量模型[J]. 纺织学报, 2013, 34(8): 138-0.
[14] 刘苏 夏风林 张琦 蒋高明. 经编电子送经的模糊PID控制设计[J]. 纺织学报, 2013, 34(8): 127-0.
[15] 张琦 夏风林 刘念 李怀宇 李萍 孙黎明. 经编机梳栉的横移振动分析[J]. 纺织学报, 2013, 34(7): 121-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!