纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 180-186.doi: 10.13475/j.fzxb.20201203407
LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing()
摘要:
为深入分析微流控技术制备微纳米纤维素材料的研究现状,促进其在各领域应用,综述了以纤维素及纳米纤维素为原料,以微流控技术为基础,结合快速冷冻法、原位界面络合法等技术,制备纤维素及纳米纤维素微球和微胶囊、纤维长丝、薄膜、微管、水凝胶的最新研究进展;针对微流控技术制备微纳米纤维素材料存在的挑战,提出了克服材料缺陷,提升微通道构建能力,探索技术结合方案的应对策略;展望了微流控技术在制备微纳米纤维素材料方面的发展前景,为微流控技术制备微纳米纤维素材料在材料科学、组织工程和再生医学等领域的应用提供参考。
中图分类号:
[1] |
MANZ A, HARRISON J, VERPOORTE J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992, 593(1/2): 253-258.
doi: 10.1016/0021-9673(92)80293-4 |
[2] | DITTRICH P S, MANZ A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 12(3): 210-218. |
[3] |
CHANG L, HUANG H, CHOU Y, et al. Direct fabrication of nanofiber scaffolds in pillar-based microfluidic device by using electrospinning and picosecond laser pulses[J]. Microelectronic Engineering, 2017, 177(6): 52-58.
doi: 10.1016/j.mee.2017.01.036 |
[4] |
YU Y, SHANG L, GUO J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(10): 2557-2579.
doi: 10.1038/s41596-018-0051-4 |
[5] |
SUH Y K, KANG S. A review on mixing in micro-fluidics[J]. Micromachines, 2010, 1(3):82-111.
doi: 10.3390/mi1030082 |
[6] | 李冉冉, 胡静, 李兴兴, 等. 微流控TPU/Cs复合中空纤维的制备及研究[J]. 现代丝绸科学与技术, 2021, 36(4): 5-7. |
LI Ranran, HU Jing, LI Xingxing, et al. Preparation and research of microfluidic TPU/Cs composite hollow fibers[J]. Modern Silk Science & Technology, 2021, 36(4): 5-7. | |
[7] |
YE C H, SIDNEY T, HU K, et al. Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles[J]. ACS Nano, 2015, 9(11): 10887-10895.
doi: 10.1021/acsnano.5b03905 |
[8] |
HOU Y Z, GUAN Q F, XIA J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface[J]. ACS Nano, 2021, 15(1): 1310-1320.
doi: 10.1021/acsnano.0c08574 |
[9] |
ZHU M W, WANG Y L. Anisotropic, transparent films with aligned cellulose nanofibers[J]. Advanced Materials, 2017, 29(6): 1606284-1606291.
doi: 10.1002/adma.201606284 |
[10] |
RAO L T, REWATKAR P, SATISH K D, et al. Performance optimization of microfluidic paper fuel-cell with varying cellulose fiber papers as absorbent pad[J]. International Journal of Energy Research, 2020, 44(4): 3893-3904.
doi: 10.1002/er.5188 |
[11] | IMAI S. Thin-film diaphragms of cellulose nanofiber fabricated using high-concentration polar dispersion for application to MEMS actuators[J]. Sensors and Actuators A: Physical, 2019, 15(2): 134-143. |
[12] |
YIN N, STILWELL M D, SANTOS T M A, et al. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro[J]. Acta Biomaterialia, 2015, 12(1): 129-138.
doi: 10.1016/j.actbio.2014.10.019 |
[13] | QI H, MA R, SHI C, et al. Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil[J]. International Journal of Biological Macromolecules, 2019, 15(6): 412-419. |
[14] |
BAEK S, PARK Y. Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide[J]. Cellulose, 2021, 28(4): 5401-5419.
doi: 10.1007/s10570-021-03872-0 |
[15] |
ZHANG M, GUO W, REN M, et al. Fabrication of porous cellulose microspheres with controllable structures by microfluidic and flash freezing method[J]. Materials Letters, 2020, 262(3): 127193-127202.
doi: 10.1016/j.matlet.2019.127193 |
[16] |
CARRICK C, LARSSON P A, BRISMAR H, et al. Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing[J]. RSC Advances, 2014, 4(37): 19061-19067.
doi: 10.1039/C3RA47803C |
[17] |
YU J, HUANG T R, LIM Z H, et al. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing[J]. Advanced Healthcare Materials, 2016, 5(23): 2983-2992.
doi: 10.1002/adhm.201600898 |
[18] | MARTINA P, BINELLI M R, STUDART A R, et al. Self-grown bacterial cellulose capsules made through emulsion templating[J]. ACS Biomaterials Science & Engineering, 2021, 7 (7): 3221-3228. |
[19] |
LEVIN D, SAEM S, OSORIO D A, et al. Green templating of ultra-porous cross-linked cellulose nanocrystal microparticles[J]. Chemistry of Materials, 2018, 30(11): 8040-8051.
doi: 10.1021/acs.chemmater.8b03858 |
[20] |
KAUFMAN G, MUKHOPADHYAY S, ROKHLENKO Y, et al. Highly stiff yet elastic microcapsules incorporating cellulose nanofibrils[J]. Soft Matter, 2017, 13(6): 2733-2737.
doi: 10.1039/C7SM00092H |
[21] | CAI Y, GENG L, CHEN S, et al. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness[J]. ACS Applied Materials & Interfaces, 2020, 28(6): 32090-32098. |
[22] | GENG L H, CAI Y H, LU L, et al. highly strong and conductive carbon fibers originated from bioinspired lignin/nanocellulose precursors obtained by flow-assisted alignment and in situ interfacial complexation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(6): 2591-2599. |
[23] |
GAO Q, WANG J, LIU J, et al. High mechanical performance based on the alignment of cellulose nanocrystal/chitosan composite filaments through continuous coaxial wet spinning[J]. Cellulose, 2021, 28(6): 7995-8008.
doi: 10.1007/s10570-021-04009-z |
[24] |
LIU Y, WU P. Bioinspired hierarchical liquid-metacrystal fibers for chiral optics and advanced textiles[J]. Advanced Functional Materials, 2020, 30(5): 2002193.
doi: 10.1002/adfm.202002193 |
[25] | LU L, FAN S, GENG L, et al. Low-loss light-guiding, strong silk generated by a bioinspired microfluidic chip[J]. Chemical Engineering Journal, 2020, 405(1): 1385-8947. |
[26] | LU L, LI L, FAN S, et al. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14765-14774. |
[27] |
LU L, FAN S, GENG L, et al. Flow analysis of regenerated silk fibroin/cellulose nanofiber suspensions via a bioinspired microfluidic chip[J]. Adv Mater Technol, 2021, 6(10): 2100124.
doi: 10.1002/admt.202100124 |
[28] |
PARK J S, PARK C W, HAN S Y. Preparation and properties of wet-spun microcomposite filaments from various CNFs and alginate[J]. Polymers, 2021, 13(11): 1709-1727.
doi: 10.3390/polym13111709 |
[29] | NECHYPORCHUK O, KARL M O, KRISHNE G V, et al. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning[J]. Advanced Materials Technologies, 2018, 7 (8): 1022-1027. |
[30] | HAKANSSON K M, FALL A B, LUNDELL F, et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments[J]. Nature Communications, 2014, 2(5):4018-4037. |
[31] |
WEI L Y, DENG N P, WANG X X. Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery[J]. Journal of Membrane Science, 2021, 637(7): 119615-119636.
doi: 10.1016/j.memsci.2021.119615 |
[32] |
WANG S, LI T, CHEN C, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials, 2018, 28(24): 1707491.
doi: 10.1002/adfm.201707491 |
[33] |
CHEN C H, ZHU C L, HUANG Y, et al. Regenerated bacterial cellulose microfluidic column for glycoproteins separation[J]. Carbohydrate Polymers, 2016, 137(6): 271-276.
doi: 10.1016/j.carbpol.2015.10.081 |
[34] |
KHUN N, ALIZADEHGIASHI M, GEVORKIAN A, et al. Temperature-mediated microfluidic extrusion of structurally anisotropic hydrogels[J]. Advanced Materials Technologies, 2019, 4 (6): 1800627.
doi: 10.1002/admt.201800627 |
[35] | ZHANG C T, ZHANG T, DAI B B, et al. Rapid fabrication of composite hydrogel microfibers for weavable and sustainable antibacterial applications[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6534-6542. |
[1] | 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189. |
|