纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 130-135.doi: 10.13475/j.fzxb.20201205406

• 染整与化学品 • 上一篇    下一篇

无卤氧化铁改性涤纶阻燃织物的制备及其性能

薛宝霞1,2, 史依然1, 张凤1, 秦瑞红1, 牛梅1,3()   

  1. 1.太原理工大学 轻纺工程学院, 山西 太原 030024
    2.山西浙大新材料与化工研究院, 山西太原 030032
    3.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
  • 收稿日期:2020-12-21 修回日期:2022-02-19 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 牛梅
  • 作者简介:薛宝霞(1990—),女,讲师,博士。主要研究方向为纳米碳基功能材料。
  • 基金资助:
    山西省回国留学人员科研资助项目(2020-052);山西浙大新材料与化工研究院资助项目(2021SX-TD013);山西省自然科学基金项目(20210302124200);山西省自然科学基金项目(201801D121096);国家自然科学基金项目(51302183)

Preparation flame retardant polyester fabric modified with halogen-free ferric oxide and its property

XUE Baoxia1,2, SHI Yiran1, ZHANG Feng1, QIN Ruihong1, NIU Mei1,3()   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030032, China
    3. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2020-12-21 Revised:2022-02-19 Published:2022-05-15 Online:2022-05-30
  • Contact: NIU Mei

摘要:

为达到涤纶织物的无卤、低烟、低毒阻燃,采用熔融纺丝法实现纳米氧化铁(Fe2O3)对涤纶的阻燃改性,并织制不同组织结构的Fe2O3改性涤纶织物,研究了织物组织结构与阻燃性能的关系。结果表明:改性涤纶平纹织物的综合阻燃性能较优异,与纯织物相比,点燃时间延长132.4%,续燃时间缩短,热释放速率下降30.1%,总热释放量下降19.7%,总产烟量减少43.5%,且烟释放速率减少44.1%;涤纶改性斜纹织物在抑制火焰蔓延方面作用明显,在织物厚度相同的情况下,织物组织系数越小,紧度越大,织物燃烧后易形成致密炭层结构,从而中断燃烧反应,发挥阻燃与抑烟的双重效应。

关键词: 氧化铁, 涤纶织物, 阻燃纺织品, 抑烟, 织物组织结构

Abstract:

In order to achieve the "halogen-free, low smoke, low toxicity" flame retardant of polyester fabric, the polyethylene terephthalate (PET) fiber was modified with the nano iron oxide (Fe2O3) using the melt spinning method. Fe2O3/PET fabric with different structures were constructed through weaving, so as to explore the internal relationship between fabric structure and flame retardant properties. The results show that the comprehensive flame retardant properties of Fe2O3/PET fabric with plain weave structure were significantly improved. Compared with the pure PET fabric, the ignition time was prolonged 132.4%. The heat release rate and the total heat release reduced by 30.1%, 19.7%. The total smoke production and smoke release rate have decreased by 43.5% and 44.1%, respectively. The Fe2O3/PET twill fabric played an obvious role in inhibiting flame spread. The research proved that, under the same fabric thickness, smaller fabric structure coefficient caused greater tightness. Fabric burning led to the dense layer of charcoal, which interrupted the combustion reaction and thus achieving double effect for flame retardant and smoke suppression.

Key words: iron oxide, polyester fabric, flame retardant fabric, smoke suppression, fabric structure

中图分类号: 

  • TS156

表1

不同织物组织试样的各项参数"

试样编号 纱线种类 组织结构 密度/(根·(10 cm)-1) 厚度/mm 面密度/
(g·m-2)
紧度/% 组织
系数
经向 纬向 经向 纬向
S-0 PET长丝 平纹 319 141±3 0.50 290.4±3 55.3±0.2 43.8±0.1 74.9±0.1 1
S-1 Fe2O3改性PET长丝 平纹 319 110±3 0.46 274.3±3 55.5±0.2 43.8±0.1 75.0±0.1 1
S-2 Fe2O3改性PET长丝 斜纹 319 170±3 0.50 297.1±3 55.5±0.1 54.2±0.1 79.6±0.5 2
S-3 Fe2O3改性PET长丝 经二重 319 156±3 0.46 295.6±3 55.5±0.1 50.6±0.5 78.0±0.5 2

图1

Fe2O3改性PET纤维纵向和横截面SEM照片"

表2

各试样的锥形量热测试参数"

试样
编号
TTI/s pk-HRR/(kW·m-2) THR/(MJ·m-2) TSP/m2
S-0 37 364.49±5 11.7±1 2.3
S-1 86 254.79±3 9.4±1 1.3
S-2 73 278.43±5 11.6±1 1.3
S-3 87 260.73±5 9.2±1 1.4

图2

各试样的总热释放量和热释放速率峰值曲线"

图3

各试样的发烟速率和总发烟量曲线"

表3

各试样的极限氧指数和垂直燃烧测试参数"

试样
编号
LOI
值/%
续燃时
间/s
损毁长
度/cm
熔滴
数量
是否引燃
脱脂棉
S-0 20.4 47.1 27.0 15
S-1 24.1 17.9 17.7 7
S-2 23.3 13.1 17.0 2
S-3 22.8 42.2 19.4 11

图4

S-0与S-1织物残炭微观结构的SEM照片(×1 000)"

图5

S-1与S-0织物残炭红外图谱"

[1] 顾伟文, 王文庆, 魏丽菲, 等. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(7): 1-10.
GU Weiwen, WANG Wenqing, WEI Lifei, et al. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate)[J]. Journal of Textile Research, 2021, 42(7): 1-10.
doi: 10.1177/004051757204200101
[2] 朱子谦. 浅谈高分子材料的应用和研究进展[J]. 中国科技投资, 2018(13): 284, 286.
ZHU Ziqian. Talking about the application and research progress of polymer materials[J]. China Venture Capital, 2018(13): 284, 286.
[3] 马利婵, 王娇娜, 李丽, 等. 静电纺空气过滤用PET/CTS抗菌复合纳米纤维膜的制备[J]. 高分子学报, 2015 (2): 221-227.
MA Lichan, WANG Jiaona, LI Li, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J]. Acta Polymerica Sinica, 2015 (2): 221-227.
[4] 张榕, 朱新生, 周舜华, 等. 涤纶阻燃技术研究进展[J]. 合成纤维, 2006, 35(8): 9-12.
ZHANG Rong, ZHU Xinsheng, ZHOU Shunhua, et al. Research progress and application of flame retardant polyester fibers[J]. Synthetic Fiber in China, 2006, 35(8): 9-12.
[5] 周颖雨, 王锐, 靳高岭, 等. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(3): 181-189, 196.
ZHOU Yingyu, WANG Rui, JIN Gaoling, et al. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics[J]. Journal of Textile Research, 2021, 42(3): 181-189, 196.
doi: 10.1177/004051757204200310
[6] 梁科文, 王锐, 朱志国, 等. 三聚氰胺氰尿酸盐对阻燃PET的影响[J]. 纺织学报, 2012, 33(11): 20-26.
LIANG Kewen, WANG Rui, ZHU Zhiguo, et al. Influence of melamine cyanurate on flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2012, 33(11): 20-26.
[7] 刘磊. 铁系化合物对膨胀型阻燃环氧树脂复合材料燃烧性能影响的作用机理[D]. 青岛: 青岛科技大学, 2015: 44-52.
LIU Lei. Effect of different iron series compounds on combustion performance of intumescent flame retardant epoxy composites[D]. Qingdao: Qingdao University of Science and Technology, 2015:44-52.
[8] 丛佳玉, 张世锋, 张求慧. Fe2O3/聚磷酸铵对聚氨酯木粉复合发泡材料的阻燃抑烟性能[J]. 林业工程学报, 2018, 3(3): 95-101.
CONG Jiayu, ZHANG Shifeng, ZHANG Qiuhui. Incorporation of Fe2O3 and ammonium polyphosphate to foamed wood-polyurethane composites for smoke suppression and flame resistance[J]. China Forestry Science and Technology, 2018, 3(3): 95-101.
[9] 夏俊, 王良芥, 罗和安. 阻燃剂的发展现状和开发动向[J]. 应用化工, 2005, 34(1): 1-4.
XIA jun, WANG Liangjie, LUO Hean. Present status and developing tendency of flame retardant[J]. Applied Chemical Industry, 2005, 34(1): 1-4.
[10] 彭云. Fe2O3协效新型含磷有机硅(PDPSI)对PET及纤维的阻燃、抑烟研究[D]. 太原: 太原理工大学, 2019: 42-44.
PENG Yun. Study on flame retardant and smoke suppression of PET and fiber by Fe2O3 synergistic new phosphorus-containing silicone (PDPSI)[D]. Taiyuan: Taiyuan University of Technology, 2019:42-44.
[11] TANG K P M, KAN C W, FAN J T, et al. Flammability, comfort and mechanical properties of a novel fabric structure: plant-structured fabric[J]. Cellulose, 2017, 24(9), 4017-4031.
doi: 10.1007/s10570-017-1372-0
[12] OZCAN G, DAYIOGLU H, CANDAN C. Effect of gray fabric properties on flame resistance of knitted fabric[J]. Textile Research Journal, 2003, 73(10): 883-891.
doi: 10.1177/004051750307301006
[13] 李为义, 张求慧, 赵广杰. 阻燃处理木质壁纸的结构与性能表征[J]. 北京林业大学学报, 2016, 38(7): 91-97.
LI Weiyi, ZHANG Qiuhui, ZHAO Guangjie. Structure and properties characterization of the flame retardant wood wallpaper[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97.
[14] WEI Y, YANG W J, TAWIAH B, et al. Synthesis of anhydrous manganese hypophosphite microtubes for simultaneous flame retardant and mechanical enhancement on poly(lactic acid)[J]. Composites Science and Technology, 2018, 164: 44-50.
doi: 10.1016/j.compscitech.2018.05.023
[15] XING W, YANG W, YANG W, et al. Functionalized carbon nanotubes with phosphorus-and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites[J]. Acs Applied Materials & Interfaces, 2016, 8(39): 26266-26274.
[16] PRAGER F H, CABOS H P. Fire-gas hazards in rail traffic[J]. Fire & Materials, 1994, 18(3):131-149.
[17] CARTY P, CREIGHTON J R, WHITE S. TG and flammability studies on polymer blends containing acrylonitrile-butadiene-styrene and chlorinated poly(vinyl chloride)[J]. Journal of Thermal Analysis & Calorimetry, 2001, 63(3):679-687.
[18] CARTY P, WHITE S. The effect of temperature on char formation in polymer blends: an explanation of the role of the smoke suppressant FeOOH acting in ABS/CPVC polymer blends[J]. Polymer Degradation & Stability, 2002, 75(1):173-184.
[19] 周晓东, 马凤云, 刘景梅, 等. 包覆型Fe基纳米催化剂制备及对低阶煤直接液化的影响[J]. 煤炭学报, 2018, 43(10): 2895-2902.
ZHOU Xiaodong, MA Fengyun, LIU Jingmei, et al. Effect of coated Fe2O3 nanocatalysts on direct liquefaction of lower-rank coal[J]. Journal of China Coal Society, 2018, 43(10): 2895-2902.
[1] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[2] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[3] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[4] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[5] 杨腾祥, 申国栋, 钱利江, 胡华军, 毛雪, 孙润军. 外电场极化银-钛酸钡/涤纶织物制备及其光催化性能[J]. 纺织学报, 2022, 43(02): 189-195.
[6] 陈智杰, 虞一浩, 符晔, 雷鹏飞, 蒋继康, 戚栋明. 柔性阻燃聚酰胺湿法涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(11): 110-116.
[7] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[8] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[9] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[10] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[11] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[12] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[13] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[14] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[15] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!